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Abstract

Nonlinearity Correction in Massive MIMO Systems via Virtual DPD

by

Chance A. Tarver

Many antenna massive multiple-input, multiple-output (MIMO) ar-

rays are a key technology in 5G and beyond. Practical deployments in-

clude nonlinear power ampli�ers (PAs) to amplify the transmitted signals

and overcome path loss in the channel. However, these nonlinearities

degrade the user error vector magnitude (EVM) and cause out-of-band

(OOB) emissions that harm the signal-to-noise ratio (SNR) of users of

adjacent channels. In legacy single antenna and MIMO systems with a

low number of antennas, this is solved by learning an inverse model of

the PAs and performing digital predistortion (DPD) before each PA. As

the number of antennas in the array grows, the computational burden of

the DPD grows signi�cantly. Moreover, the exact nature of the nonlin-

earities is not straightforward in massive MIMO scenarios that involve

beamforming, potentially with multiple users.

In this work, we seek to answer many fundamental questions about the

e�ects of nonlinear PAs in massive MIMO. We collect and present mea-

surements from Doherty PAs in a 16T MIMO array with 491.52 MHz of

capture bandwidth at 3.5 GHz and 100 MHz 5G new radio (NR) signals

as well as beamformed results from the Recon�gurable Eco-system for

Next-generation End-to-end Wireless (RENEW) basestation. We use the



measurements to assist in developing mathematical models and simula-

tors. We �nd that for a single-user system, the OOB energy is dominant

in the direction of the main beam. Moreover, in multi-user scenarios,

distinct spatial intermodulation beams of OOB energy appear in unique

directions distinct from the intended users. These spurious beams may

potentially desensitize victim users of adjacent channels. We create a vir-

tual DPD (vDPD) solution that moves the DPD block to predistort before

the massive MIMO precoder where the dimensionality is lower, reducing

complexity in some scenarios. Our novel vDPD scheme uses a neural net-

work (NN) to learn the function to linearize the e�ective nonlinearity in

each beam.
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Chapter 1

Introduction

1.1 Motivation

Next-generation wireless systems should prioritize energy. This endeavor is part of a

global e�ort to reduce energy consumption to combat climate change. While the cur-

rent cellular standards prioritize enhanced mobile broadband (eMBB), ultra-reliable,

low-latency communications (URLLC), and massive machine-type communications

(mMTC), future versions of the wireless standards should include a target for energy.

While no one can optimize the full wireless stack, there is often room for improvement

at each layer. In this thesis, we consider reducing the digital predistortion (DPD)

complexity.

Currently, operators are deploying 5G worldwide, and this will enable connection

between more than a billion people and even more devices. Beyond the simple voice

communication seen in the early cellular standards, 5G and future beyond 5GS (B5G)

standards enable high throughput, low latency, and high connection density. These

areas will enable new use cases such as augmented reality, remote surgery, self-driving

cars, smart factories, and other areas of innovation. One key technology enabling the

future of wireless is massive multiple-input, multiple-output (MIMO), where many
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antennas simultaneously transmit to multiple users on the same frequency channel

[1]. Multi-user (MU)-precoding enables this capacity gain and can save energy as

extra energy is not wasted being transmitted in directions without users.

While massive MIMO can save energy and improve the radio access network

(RAN), the communications literature often overlooks one critical component that

threatens these goals � the power ampli�er (PA). A modern PA is typically a solid-

state device that ampli�es some radio frequency (RF) signal to a higher power to

overcome path loss between two radios. These devices typically consume most of

the power budget of a base station (BS) [2], [3] and often operate at power-added

e�ciency (PAE) of less than 50%. Hence, as we scale up the number of PAs in a

massive MIMO BS, controlling the power demands of the PAs becomes critical.

The PA can be operated near its saturation point to improve the PAE. For exam-

ple, many PAs will have e�ciencies near 20% when operating with "back o�" in their

linear region. While in saturation, many PAs may have energy e�ciency as high as

60% [4]. However, the device becomes highly nonlinear when operating in saturation.

The tradeo� between nonlinearity and e�ciency is especially true for Doherty PAs,

which are being considered for many 5G applications (including massive MIMO) due

to their e�ciency. These PAs present extreme linearity challenges due to their unique

architecture containing dedicated carrier and peaking ampli�ers [4]. The nonlinearity

creates spectral regrowth around the signal carrier, leaking energy from our licensed

spectrum into adjacent bands. This out-of-band (OOB) leakage energy could harm

a user of an adjacent channel, degrading their signal-to-noise ratio (SNR). Standards

and regulatory governing bodies such as 3rd Generation Partnership Project (3GPP)

and the Federal Communications Commission (FCC) create spectral emission masks

to prevent this by limiting the maximum energy an RF transmitter may leak. In the

case of 5G in the sub-6 GHz spectrum, this limit is -45 dBc, or 45 dB below the main
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carrier

5G and other radio access technologies (RATs) are not particularly helpful. 4G,

5G, and Wi-Fi physical layers (PHYs) utilize orthogonal frequency-division multiplex-

ing (OFDM) due to its high spectral e�ciency, low-complexity equalization, and sim-

ple matrix operations for other digital signal processing (DSP) such as massive MIMO

precoding. However, multicarrier waveforms have a high peak-to-average power ratio

(PAPR). Hence, the root-mean-square (RMS) signal power is already backed o� from

the saturation point of the PA so that the signal's peaks are within the operating

range of the PA. Moreover, bandwidths as wide as 100 MHz are used in sub-6 GHz

5G, leading to more memory e�ects to account for in DPD processing and hence more

complexity.

Most wireless systems currently use DPD and other techniques such as crest factor

reduction (CFR) to reduce OOB emissions, improve in-band error vector magnitude

(EVM), and increase PA e�ciency [3], [5], [6]. A trained DPD module creates an

inverse model of a PA so that the cascade of the DPD and the PA is linear. However,

DPD is often computationally complex, requiring many Giga �oating-point opera-

tions per second (GFLOPS) for a typical 5G transmitter. While this is tolerable in

single antenna systems, it becomes a sizable computational burden as the number of

antennas grows.

Single-input, single-output (SISO) DPD has been deployed for over 20 years and

is well studied. However, massive MIMO introduces new challenges. In particular,

due to beamforming, it is not necessarily obvious where the OOB spectral regrowth

goes. The adjacent channel energy could potentially be coherent or noncoherent

in any direction. While the straightforward approach may be to linearize each PA

individually, this would signi�cantly increase the total complexity of the DPD per

base station. Hence, we explore methods to reduce the predistortion complexity for
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MIMO systems in this work.

A few existing works have examined this problem. However, many of these works

neglect vital aspects. For example, some combination of memory e�ects, PA varia-

tions, wide bandwidths, OFDM signals, and multi-user communications are frequently

ignored, even though they are critical to modern 5G systems. Moreover, many works

do not consider the e�ect of nonlinearity on victim receivers in adjacent bands and

instead focus on improving their own user EVM. We seek to provide a fuller investi-

gation that considers each of these in this work.

1.2 Contributions

This thesis provides a detailed analysis of the problem, existing solutions, and state-

of-the-art. Then based on the �ndings, we introduce a novel solution that reduces the

total running predistortion complexity for some scenarios. In particular, we perform

the predistortion operation before the precoder so that predistortion is performed per

beam instead of per antenna, linearizing the total nonlinear distortion in the far-�eld

of the array.

1.3 Published Works

We have investigated various aspects of DPD and published in the area for the last �ve

years. These are shown below along with their citation number from the bibliography.

[7] M. Abdelaziz, C. Tarver, K. Li, et al., �Sub-band digital predistortion for noncon-
tiguous transmissions: Algorithm development and real-time prototype implemen-
tation,� in 2015 49th Asilomar Conference on Signals, Systems and Computers,
2015, pp. 1180�1186. doi: 10.1109/ACSSC.2015.7421326

[8] M. Abdelaziz, L. Anttila, C. Tarver, et al., �Low-complexity subband digital
predistortion for spurious emission suppression in noncontiguous spectrum ac-

https://doi.org/10.1109/ACSSC.2015.7421326
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cess,� IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 11,
pp. 3501�3517, 2016. doi: 10.1109/TMTT.2016.2602208

[9] C. Tarver, M. Abdelaziz, L. Anttila, et al., �Low-complexity, sub-band DPD
with sequential learning: Novel algorithms and WARPLab implementation,� in
2016 IEEE International Workshop on Signal Processing Systems (SiPS), 2016,
pp. 303�308. doi: 10.1109/SiPS.2016.60

[10] C. Tarver, M. Abdelaziz, L. Anttila, et al., �Multi component carrier, sub-band
DPD and GNURadio implementation,� in 2017 IEEE International Symposium

on Circuits and Systems (ISCAS), 2017, pp. 1�4. doi: 10.1109/ISCAS.2017.

8050455

[11] K. Li, A. Ghazi, C. Tarver, et al., �Parallel digital predistortion design on mobile
GPU and embedded multicore CPU for mobile transmitters,� J. Signal Process.
Syst., vol. 89, no. 3, pp. 417�430, 2017

[12] C. Tarver, A. Balatsoukas-Stimming, and J. R. Cavallaro, �Design and implemen-
tation of a neural network based predistorter for enhanced mobile broadband,� in
2019 IEEE International Workshop on Signal Processing Systems (SiPS), 2019,
pp. 296�301. doi: 10.1109/SiPS47522.2019.9020606

[13] C. Tarver, L. Jiang, A. Se�di, et al., �Neural network DPD via backpropaga-
tion through a neural network model of the PA,� in 2019 53rd Asilomar Con-

ference on Signals, Systems, and Computers, 2019, pp. 358�362. doi: 10.1109/
IEEECONF44664.2019.9048910

[14] C. Tarver, A. Balatsoukas-Stimming, and J. R. Cavallaro, �Predistortion of
OFDM waveforms using guard-band subcarriers,� in 2020 54th Asilomar Con-
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[15] C. Tarver, A. Singhal, and J. R. Cavallaro, �GPU-based linearization of MIMO
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[17] C. Tarver, M. Tonnemacher, H. Chen, et al., �GPU-based, LDPC decoding for
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in separate channels, and many of the established concepts can carry over to the

MIMO case. In [11], we implemented various DPD schemes on a mobile graphics pro-

cessing unit (GPU). In [12], [13] we consider neural network (NN)-based distortion.

We then later use the NN to predistort OFDM guard-band subcarriers [14]. In [15],

we implement a memory polynomial (MP) DPD per antenna on a GPU for MIMO

predistortion. In [16], we scale up the OFDM-based DPD processing to operate on

multiple antennas. In [22], we perform a version of virtual DPD (vDPD) to operate
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I have also developed breadth throughout communication systems, as shown in the
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enhance uplink coverage. In [20], [21], we develop spectrum sharing schemes for Citi-

zens Broadband Radio Service (CBRS) and Unlicensed LTE. Additional publications

based on the work in this thesis may also be published.

1.4 Thesis Outline

The remainder of this document is organized as follows. In the next chapter, we

present a background on linearization for SISO and MIMO systems. To perform

simulations and experiments we developed a software suite to simulate the nonlin-

earities in massive MIMO called MIMO Simulator with Ampli�ers (MIMOSA). We

present this software framework in Chapter 3. Then, we present various investiga-

tions on MIMO nonlinearity including mathematical models, simulations exploring

the problem when it becomes mathematically intractable, and measurements from a

MIMO array. Finally, we present an overview of the vDPD algorithm, which performs

predistortion before a precoder using a NN before concluding in Chapter 6.
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Chapter 2

Background

In this chapter, we present the background work for multiple-input, multiple-output

(MIMO) digital predistortion (DPD), including the relevant mathematical models

and prior works.

2.1 MIMO Communications

While multi-antenna MIMO communications have been around for decades [23], mas-

sive MIMO was introduced more recently. In 2010, Thomas Marzetta published the

seminal work proposing to let the number of antennas grow to in�nity [24]. The

unlimited number of base station antennas leads to capacity gains for the network as

the e�ects of noise and fast fading disappear, and multiple users can be served for the

same time/frequency resource through spatial diversity. In the following subsection,

we present the main mathematical model considered throughout this work.

2.1.1 OFDM MU-MIMO Waveform

We consider a fully digital, multi-user (MU) massive MIMO base station (BS) sys-

tem with N power ampli�ers (PAs), each connected to a single antenna. The BS
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serves U single antenna users per time slot. Without loss of generality, we restrict

the presentation below to one orthogonal frequency-division multiplexing (OFDM)

symbol. A symbol of data to the users is represented by the vector [s]w ∈ OU , where

w indexes the OFDM tones from 1 to W and O represents the set of complex-valued

constellation points. Pulse shaping is applied by including guard-band subcarriers

that are normally empty.

Linear precoding is applied separately to each OFDM tone, generating W vectors

uw ∈ CN with uw = Gwsw, where each element represents a precoded subcarrier for

one antenna. Here, Gw ∈ CN×U is the precoding matrix such as zero-forcing (ZF)

or maximum ratio transmission (MRT). Each vector is remapped to contain all the

tones per antenna, [u1, . . . ,uW ] = [a1, . . . , aN ]
T , where each an is a W -dimensional

vector containing all tones for antenna port n ∈ {1, . . . , N}. At this point, the

data is converted from the frequency domain to the time domain via the inverse

discrete Fourier transform (IDFT), which is typically calculated via an inverse fast

Fourier transform (IFFT). The data is reorganized to be serial instead of parallel,

and a cyclic pre�x is added. In many systems, windowing is also applied between

symbol boundaries to improve the spectral shaping [25]. We express this time-domain

representation for each antenna as the vector xn. This vector is upconverted to radio

frequency (RF) where it is transmitted through a PA with nonlinear function fn(·).

The time-domain data for each antenna is given as x̂n = fn(xn), where each vector can

equivalently expressed as a discrete-time signal, such as x(k) = [xn]k. The frequency-

domain equivalent is given as ûn.

In OFDM systems, the channel is usually modeled in the frequency-domain for

each tone w as, yw = Hwûw + nw, where yw denotes the received data, Hw is the

U ×N channel vector, and nw is a U × 1 Gaussian random noise term.
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2.1.2 Testbeds

To bridge the gap between theory and reality, a few groups took early strides to de-

velop massive MIMO platforms. Each represents a massive accomplishment as there

are many engineering design challenges when developing testbeds of this scale. In

2012, The Argos platform was established at Rice University[26]. The platform con-

sidered array sizes of up to 96 antennas and provided insight into realistic channels

[27], full-duplex [28], and many other concepts. There are three generations of this

testbed, with the latest being actively tested and providing results in the Platform

for Open Wireless Data-driven Experimental Research (POWDER)-Recon�gurable

Eco-system for Next-generation End-to-end Wireless (RENEW) platform as a collab-

oration between Rice University and University of Utah [29], [30]. Similarly, Lund

University developed the LuMaMi platform supporting up to 100 antennas and ten

spatial streams for 20 MHz OFDM [31]. This platform was later updated to support

real-time operation [32]. Currently, massive MIMO is a commercial reality [33] to

various extents, with Samsung currently providing 5G new radio (NR) solutions with

64 transmitters supporting up to 8 downlink spatial streams and over 200 MHz of

bandwidth [34].

While each of these platforms has provided tremendous value to the community,

PA nonlinearity has not been a primary research focus and was likely not considered in

their design. Hence, there are challenges when using the existing MIMO testbeds for

exploring this topic. For example, these platforms do not provide feedback paths for

PA observation and DPD learning. They also were not designed while considering the

typical 3-5x upsampling rates used to make performing DPD or PA characterization

viable for most wideband signals of interest. Hence, the maximum useful bandwidth

that can be linearized is often fairly small.
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2.2 Linearization of SISO Systems

PAs were �rst used in audio applications in the early 1900s. Many variations were

quickly developed, including what would become known as the Doherty PA in 1936 [35].

While the technology has changed from vacuum tubes to solid-state, many core de-

velopments from this time are still widespread today. For example, the Doherty

ampli�er is still widely used for its energy e�ciency and is an essential component in

5G deployments [4].

Soon after the adoption of the PA, the nonlinear e�ects such as spectral regrowth

became a problem, and feedforward and feedback schemes became used in the analog

domain to correct the nonlinearities Beginning in the 1980s, DPD schemes were �rst

considered as digital modulation schemes were also being widely adopted.

For any digital predistortion system, two aspects can often be interchanged: the

predistortion model and the learning method. In the following sections, we present

an overview of the most widely used technologies for each. For additional surveys on

the topics, see [5], [3], and [6].

2.2.1 Nonlinear Models

Saleh Model

The dominant PA model until relatively recently was the Saleh model [36]. This

memoryless model describes a device's AM-AM, input amplitude to output amplitude,

and AM-PM, input amplitude to output phase distortion, characteristics with only

four parameters.

A(x(t)) =
αAx(t)

1 + βAx2(t)
; Φ(x(t)) =

αΦx(t)

1 + βΦx2(t)
(2.1)
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In Eq. (2.1), the PA output modulus is given as a function of the input signal's

envelope, x(t).

While the subsequent models in this section are currently used more frequently,

the Saleh model is still utilized for simulating PAs [37]. This nonlinear model is

not commonly used as a predistorter. However, it may be inverted in some cases to

create a predistorter function [38], or an inverse may be calculated in the form of a

look-up-table (LUT) [39].

Volterra-Series Based Nonlinear Models

For the predistortion models, Volterra series [40] and its simpli�ed variants such as

the memory polynomial (MP) [41] and generalized memory polynomial (GMP) [42]

are frequently used. The MP was �rst introduced in [43] and expanded on in [41] and

is given in Eq. (2.2)

x̂(k) =
P∑

p=1

M∑
m=0

αp,mx(k −m) |x(k −m)|p−1 . (2.2)

This model was expanded into the GMP, shown in Eq. (2.3), which adds additional

cross terms between the signal and its envelope. The more expressive nature of this

formulation while remaining linear in terms of the parameters has led to widespread

adoption:

yGMP (n) =
∑
p∈Pa

∑
m∈Ma

apmx(n−m) |x(n−m)|p−1+

∑
p∈Pb

∑
m∈Mb

∑
l∈Lb

bpmx(n−m) |x(n−m− l)|p−1+

∑
p∈Pc

∑
m∈Mc

∑
l∈Lc

cpmx(n−m) |x(n−m+ l)|p−1 . (2.3)

For these models, odd-order terms are typically dominant and the even-order can
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be eliminated [42]. Other variations also exist that compensate for local oscillator

(LO) leakage and in-phase and quadrature (I/Q) signal imbalance [44].

Neural Network DPDs An alternative to Volterra-series-based models is the neu-

ral network (NN) [13], [45], [46]. While most NN-based predistorters are MultiLayer

Perceptron (MLP)-based, other architectures are being considered and may provide

bene�ts for memory e�ects. For example, recurrent neural networks (RNNs) have

been considered in [47], and [48] introduces the long short-term memory (LSTM) for

DPD. More recently, convolutional neural networks (CNNs) have also been considered

[49], [50].

In [13] and other works, the authors consider a multilayer feedforward NN with H

hidden layers and N neurons in each hidden layer. M time-domain inputs are given

to the network to account for memory e�ects in the PA. For each sample, the real and

imaginary components enter the NN on separate neurons. Let g denote a nonlinear

activation function, and let Wi and bi denote the weights matrices and bias vectors

corresponding to the ith layer in the NN. The output of the �rst hidden layer at time

instant n is

h1(n) = g


W1



ℜ(x(n))

ℑ(x(n))
...

ℜ(x(n−M + 1))

ℑ(x(n−M + 1))


+ b1


. (2.4)
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The output of hidden layer i ≥ 2 is

hi(n) = g (Wihi−1(n) + bi) . (2.5)

Finally, the output of the network after hidden layer H is

x̂(n) = WH+1hH + bH+1, (2.6)

where the �rst and second elements of x̂ represent the real and imaginary part of the

signal, respectively. Complexity remains low when considering a recti�ed linear unit

(ReLU) activation function, which can be implemented with a simple multiplexer. To

further reduce the computational burden, a designer could consider options such as

pruning [51] and quantization [52].

Neural networks and other machine learning-based techniques can provide bene�ts

in that no particular model is needed. With a traditional model, such as the GMP,

only features explicitly included in the model may be accounted for. To account for

high order nonlinearities, memory e�ect, cross-terms, I/Q imbalance, etc., the model

quickly can become intractable. However, machine learning techniques follow the

data and learn the features that best minimize a loss function. While high-order

polynomials su�er from aliasing when using low sample rates, NNs do not necessarily

have the same limitations as they are model-free.

Other areas of communications have realized the potential value of neural net-

works. For example, [53] turns the entire communication system into a machine

learning problem, and [54] uses deep learning for MIMO detection. Recently, the

concept of unrolling signal processing and using machine learning tools and tech-

niques has gained traction for a wide variety of applications, including low-density

parity-check (LDPC) error-correcting code decoding. For a complete overview of a
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wide range of applications of deep unfolding, see [55].

2.2.2 Learning Methods

With any predistortion method, it is necessary to train the model to become an

e�ective inverse. However, this is challenging because the PA is not given. Moreover,

even if a perfect model of the PA existed, many nonlinear functions are not invertible

to where an inverse model for predistortion could easily be calculated. Hence, creative

methods are needed to train the predistorter.

Indirect Learning Architecture In general, it is possible to solve for a given non-

linear system if it is linear in the parameters and if the input and output are known.

In such as case, the parameters that minimize the model error can be optimized via

methods such as least-squares. However, that is not directly the case with DPD, as

the ideal output of the predistorter to create the linearized PA output is unknown. In

[56], the authors solve this problem by introducing the indirect learning architecture

(ILA). Before this development, the idea of the ILA was introduced to train neural

network control systems [57].

The ILA introduces the idea of a postdistorter, with the input being the PA

output. The di�erence between the output of the predistorter and postdistorter is

the error which can be used to update the model through least-squares. Since its

introduction in [56], the ILA has been widely adopted. In [41], the ILA is adopted

to train an MP predistorter. The GMP is introduced with ILA-based learning along

with a Newton method scheme for updating the pre and post-distorters.

Iterative Learning Control A recent alternative to ILA in the literature is iter-

ative learning control (ILC). First introduced in [58], ILC adopts a technique from

control theory to learn the correct predistorted signal. Then, once the predistorted
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signal is identi�ed, a generic predistortion model can be solved for to map the origi-

nal input signal to the predistorted signal. When compared to a direct and indirect

learning approach for training a GMP, the authors in [58] report improved adjacent

channel leakage ratio (ACLR) reduction via their ILC-DPD technique.

Decorrelation A decorrelation method was used in [8] to predistort in scenarios

with non-contiguous carrier aggregation. The PA feedback was sampled at spurious

emissions caused by the intermodulations between carriers. Then this feedback was

correlated with basis functions so that the inverse could be injected in the digital

baseband before the digital-to-analog converter (DAC). This decorrelating technique

had the advantage of reducing the necessary sampling rate in carrier aggregation

scenarios as each sub-band could independently be sampled at low rates.

Backpropagation Backpropagation can also be used for PA and DPD identi�ca-

tion. While backpropagation is typically associated with NNs, it can be used on other

di�erential functions. When using backpropagation, we take the gradient of a loss

function with respect to a function's parameters and update the parameters based

on their partial derivative [59]. In [60], the authors learn an MP via gradient descent

to model the PA nonlinearities in a full duplex system. In [13], we present a DPD

solution where we learn a NN model of a PA and use this to aid in the training of

a NN DPD through backpropagation. While backpropagation is a powerful learning

method, it also has high complexity. It often requires the aid of a graphics processing

unit (GPU) to perform the training in a reasonable amount of time, which may not

be suited for low-power deployments.

Direct Learning Direct learning is a poorly de�ned term that is often used to

refer to any technique that is not one of the previously mentioned techniques. Some
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techniques that are often referred to as direct learning include a pth-inverse, which

approximates the inverse coe�cients of a Volterra series [40], to other closed loop

estimators [61]. While direct learning can avoid issues such as bias that appear in the

ILA, convergence is usually LMS-based and slow.

SISO DPD Comparison In Section 2.2.2, we compare a few popular implementa-

tions. However, the comparison is of limited value since there is no common frame of

reference. [45] and [41] include only simulations. The nonlinearity experienced heav-

ily depends on the PA, its technology (laterally-di�used metal-oxide semiconductor

(LDMOS), gallium nitride (GaN), etc.), its biasing, and the RF frontend architecture.

The performance also depends on signal characteristics such as the peak-to-average

power ratio (PAPR), bandwidth, and root-mean-square (RMS) power of the PA input

signal. Finally, the measured ACLR value depends on the de�nition of channel band-

width used. Hence, this table is not meant as a performance comparison. Instead,

it provides a quick overview of the variety of schemes and their place in the DPD

history. For works without a stated ACLR, we estimate it based on the �gures.

2.2.3 Implementations

For each of the previous methods, the DPD computation needs to be performed at

a su�cient rate to support the desired communication signal bandwidth. There are

various implementations available throughout the literature. In [12], the authors

implement and compare NN and MP predistorters on �eld-programmable gate array

(FPGA) and �nd that the NN can achieve better performance for lower complexity.

In [63], an MP predistorter is implemented on FPGA using precalculated tables to

reduce the hardware computation requirements.

GPUs are attractive for implementation due to their high degree of parallelism
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Table 2.1: Comparison of Common SISO DPDs

Reference Year Model Learning Method Bandwidth (MHz) ACLR (dBc)
Before/After

[39] 1983 Saleh Direct � �

[62] 1990 Saleh Direct 0.030 -30/-60

[45] 1993 MLP Backprop � �

[56] 1997 Volterra ILA � �

[43] 2001 MP Direct 5 -42/-52.6

[41] 2004 MP ILA � -45/-70

[42] 2006 GMP ILA 15 -40/-57.6

[63] 2010 MP � 3.84 -35/-60

[8]1 2016 MP Decor. 52 -35.6/-68.3

[58] 2016 GMP ILC 5 -32.4/-58.6

[13]1 2019 MLP Backprop 10 -40/-50

1 Author of this thesis also coauthored this work.
2 There were two, 5 MHz component carriers in this work. For ACLR, the IM3+
spur was measured.

and ease of programming compared to other high-performance computing devices like

FPGAs. Hence, they have been used for DPD [11] [64]. GPUs are also considered

in other areas of software-de�ned radio (SDR) physical layers, including for MIMO

processing. For example, in [65], GPUs are used for detection and beamforming in

an MU-MIMO base station. In [17], we used GPUs for LDPC decoding. By porting

more functionality into GPUs, the bene�ts of the GPU can be further realized as the

data can stay on the GPU longer, avoiding time-consuming memory transfers into

and out of the device.

2.3 Linearization of MIMO Systems

While single-input, single-output (SISO) DPD systems are relatively well studied, as

outlined in the previous section, MIMO systems are still currently being explored. In

this section, we provide an overview of this topic.
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2.3.1 Early Analysis

The exploration of the directionality of antenna arrays began in [66]. In this early

work, active phase arrays for satellite communications were explored, and the author

found that �nonlinearities form beams that, in general, radiate in directions di�erent

from the principal beam directions." This conclusion would later be rediscovered in

the literature over 30 years later in the context of fully digital beamforming for massive

MIMO.

Shortly after the publication of massive MIMO [24], many works began to explore

practical aspects of scaling up the number of digital transceivers, including the e�ect

of PA nonlinearities.

One popular technique for analyzing the e�ect of nonlinearities was to treat them

as uncorrelated noise [67]�[69]. In such a scenario where the nonlinearities are truly

uncorrelated, the authors �nd that the e�ects are expected to diminish as the size of

the array increases. However, the premise of uncorrelated noise has been shown to be

inaccurate [70]. For example, many works have shown that the out-of-band (OOB)

distortion will see array gain in line-of-sight (LoS) scenarios in the direction of the

user.

2.3.2 PAPR Reduction Methods

Due to the degrees of freedom available, multiple works have focused on controlling

the PAPR of the MIMO output [71], [72]. While these works can reduce the PAPR

of the signal at each antenna, that is often not su�cient to improve the ACLR.

However, PAPR reduction is a vital step that is taken in most practical applications

and should be deployed with a DPD method. Future research is needed to explore

the joint application of PAPR reduction and predistortion in the context of massive

MIMO.
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2.3.3 mmWave

Many systems are targeted to the millimeter wave (mmWave) bands or frequency

range 2 (FR2) in the 3rd Generation Partnership Project (3GPP) nomenclature.

In mmWave systems, the target ACLR is relaxed to -25 dBc. This leakage can

be tolerated due to the increased path loss in these bands leading to less intercell

interference with users of adjacent bands. Many works targeting this band are hybrid

systems [73], where a combination of digital beamforming, power splitting, and analog

phased-array beamforming are used to drive a larger number of antennas. Hybrid

systems may reduce the necessary digital system complexity at the expense of degrees

of freedom.

2.3.4 Crosstalk

When discussing impairments in massive MIMO systems, crosstalk, where the signal

from one antenna couples to an adjacent element or circuit, is often also considered

in the literature.

Nonlinear Crosstalk

[74] was one of the �rst works to consider this and experimentally showed the change

in the output error vector magnitude (EVM) for a single PA. While this represents

an important early work in the space, there are a few caveats that have not been fully

addressed in the subsequent literature. Firstly, the output EVM of an individual

power ampli�er does not indicate all there is to know about the performance of a

MIMO system. For example, in the presence of beamforming, the crosstalk e�ects

will not necessarily combine with the full array gain, leading to better far-�eld perfor-

mance. Secondly, nonlinear crosstalk occurring at the input of the PA was considered

up to a level of -15 dB. In this experiment, the authors arti�cially inject this extreme
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crosstalk. However, this benchtop experiment does nothing to tell engineers what

level of crosstalk to naturally expect in a deployment. Regardless, many later works

took this original paper to mean that crosstalk could be as high as -15 dBc and de-

signed complicated algorithms to compensate. In practice, nonlinear crosstalk levels

should never be this high. If the crosstalk levels were to approach that level, the most

prudent thing for the designer to do would be to add additional physical shielding

between the elements.

In [75], a cross-over DPD was developed where the DPD for each antenna includes

the other antenna inputs in the model. This original work was considered for a 2×2

MIMO system. The work shows that amounts above -30 dB crosstalk can contribute

signi�cantly to degradation in DPD performance. Similar to the authors' prior work,

this was a benchtop experiment that explored the e�ects as the amount of crosstalk

was swept in a controlled manner. Since then, many subsequent works [46], [76] have

incorrectly assumed that -30 dB to -15 dB is a reasonable amount of crosstalk to

expect in practical massive MIMO systems. However, in practical multiple antenna

platforms, nonlinear crosstalk is often better than -60 dB, with SDR platforms such

as the Xilinx ZCU111 FPGA board reporting a typical crosstalk level of -70 dB [77].

Beam-dependent Backwards Crosstalk

The second form of crosstalk often considered is backwards crosstalk. In this scenario,

a reverse wave comes into the output port of the device, creating a load modulation

that can change the PA model. In a MIMO system, the reverse wave could be

caused by the transmitted signal from an adjacent antenna element. Hence, many

recent works focus on beam-dependent load modulation where the over-the-air (OTA)

coupling depends on the direction the output beams are steered. [78] creates a NN-

based method to compensate for this.
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While this e�ect is well studied, and there are multiple proposed solutions, these

works neglects the fact that the problem can largely be solved by the circulator, which

is already present in most time-division duplexing (TDD) massive MIMO systems.

Circulators are used between the PA and the antenna so that the RX signal from

each antenna element can be directed to the RX chain, while the TX signal can be

directed to the same antenna. Circulators can often have isolations of over 20 dB on

the forward and backwards waves, and hence would dramatically reduce the concern

over beam-dependent load modulation.

2.3.5 Beam-oriented Methods

One popular technique for MIMO linearization, which we expand on in this thesis, is

beam-oriented DPD. In BO-DPD, the far-�eld pattern is linearized instead of lineariz-

ing each individual PA. This method was �rst presented in [79] and is particularly

useful for hybrid systems where it is impossible to directly linearize each PA.

2.3.6 Precoding Methods

Some recent methods exploit the degrees of freedom in massive MIMO to predistort.

In [80], precoding is performed to cancel the third-order nonlinearities. However, this

comes at the expense of beam-forming gain. Moreover, multi-user schemes are not

explored.

2.3.7 Other MIMO DPD Schemes

In [81], the authors adapted the decorrelation technique from [8] to provide a reduction

in complexity across an array. However, this method is targeted at time-domain

processing and is performed per antenna. The main approach of [81] is to replace the

computationally expensive GMP model with a lower complexity scheme. [82] develops
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a two-box DPD scheme for millimeter-wave massive MIMO, which compensates for

the di�erences between PAs and then linearizes the whole array with a common DPD.

However, OFDM MIMO is not considered; instead, the technique is designed around

time-domain phased array processing. The authors of [82] do not consider the OOB

emissions in non-user directions.

2.3.8 Experimental Measurement Results

Massive MIMO hardware is not easily obtained or built. Hence, there is a shortage of

experimental measurements in the community. However, some works have performed

proof-of-concept (PoC) measurements on the e�ect of nonlinear PAs in MIMO. [82]

developed a mmWave array to verify their two-box DPD approach with four trans-

mitters and 40 MHz signal bandwidth. [78] uses a 200-MHz 5G NR OFDM waveform

and a 64-element active antenna array to predistort using a NN at a 28 GHz carrier.

2.3.9 Implementations

Currently, few works in the literature implement a DPD for massive MIMO. In prin-

cipal, any implementation from Section 2.2.3 could be reapplied and scaled up by the

number of PAs in the array. However, this may become particularly challenging when

the size of the DPD implementation scales beyond what can easily �t in an FPGA,

application-speci�c integrated circuit (ASIC), and GPU. Many MIMO systems re-

quire some degree of decentralization. For example, [65] and [18] considers a fully

decentralized solution, while other implementations may have a primary centralized

FPGA for the primary processing, then multiple other FPGAs for handling some

subset individual RF streams.

In [15], we implement a single GPU for performing an MP DPD on each antenna

stream. We found that the throughput that a single GPU can support falls by a



CHAPTER 2. BACKGROUND 25

factor of two, with each doubling in the number of antennas. While this work focused

on how fast the GPU could perform the necessary computation, it did not consider

the massive challenge of moving the I/Q data out of the processor to the DACs.

2.4 Current Issues

Massive MIMO poses many challenges that are di�cult to overcome. In Table 2.2,

we compare existing works that include some sort of simulation or experimental test.

This table is meant to provide an overview of the current state of the �eld and avail-

able results. These �ndings are not directly comparable due to the many di�erences

between each experimental platform that need to be controlled for. While each work

contributes to the literature in some manner, when looking at the whole of the avail-

able works, there are some apparent gaps. In particular, many existing works fall into

one or more of the following limitations.
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1. Single user. Works do not consider the case of multi user.

2. Neglects spurious beams. Many of the existing works for MU-MIMO do not

consider the OOB power in non user directions.

3. Scales with the number of antennas. Some works focus on reducing the

complexity per antenna. However, this can still be problematic for scenarios

with many antennas.

4. PA model simpli�cations.Neglects high order nonlinearities, memory e�ects,

and PA variability.

5. Limited bandwidth. Most works do not consider cases with bandwidths on

the order of 100 MHz, similar to what is deployed in 5G NR.

6. No experimental results. Many works rely on simulation without measuring

MIMO hardware.

We seek to remedy as many of these issues with the state of the art in our following

investigations, experiments, and algorithms.
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Chapter 3

MIMO Software Systems

To perform our simulations and testing, we required the ability to simulate a full

end-to-end multiple-input, multiple-output (MIMO) system, including power ampli-

�er (PA) nonlinearities. As we began our explorations, we developed a software suite

called MIMO Simulator with Ampli�ers (MIMOSA) to explore various research ques-

tions in matlab. We then extended this simulation platform to support current

state-of-the-art tensor libraries supported in python such as PyTorch by creating a

python package called MIMOSA for Python (MIMOSApy). Using our Python pack-

age, we are able to explore novel machine learning solutions to various problems

in wireless communications such as neural network (NN)-based digital predistortion

(DPD) for MIMO, machine-learning aided precoding, and a variety of other topics

that are being explored as candidates for and arti�cal intellgence (AI)-based 6G [83].

In this chapter, we present an overview of the software environments to support the

investigations throughout the thesis.
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3.1 MIMOSA

Many existing open source options for exploring MIMO systems perform limited sim-

ulations with the primary purpose of exploring metrics such as capacity. However,

these simulations do not consider the PA nonlinearity. For this reason, we developed

our own simulation platform to support the investigations for this thesis. In this sec-

tion, we introduce MIMOSA, a general purpose MIMO simulation environment that

includes impairments such as PA nonlinearity [84].

3.1.1 Motivation

Throughout many projects, it is common to implement a variety of quick functions

to be able to test out core, novel ideas in research. While this is useful for a quick

proof-of-concept (PoC), these testbenches often get stretched to do a wide variety of

tests. Often, the initial assumptions of the original code are forgotten as we create a

"spaghetti code" where we hack together various code fragments to test a new idea.

As the research meanders, the codebase becomes more di�cult to come along as we

try to overextend the usefulness of the original code. These sort of codebases are often

passed around and contorted in new ways for new projects, becoming an unusable

mess that becomes impossible to debug. However, development and research does

not need to be this way. By emphasizing good software-design principals from the

beginning, we can develop a library of tools that ultimately are multi-purposed, easy

to maintain, and ultimately time-saving.

The key approach taken in this project was to develop a library instead of just a

script for testing an idea. This approach is the inverse of how many projects begin. We

decompose our ideal experiment into core pieces, implement those pieces as modules

that can operate independently and �exibility, then we build an application that

simply uses these modules. Whenever we need to test new ideas, we simply connect
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and con�gure the well-designed modules in new ways, rather than having to untangle

and decouple the ideas from an initial experiment.

3.1.2 Software Architecture

We implement an object-oriented software library in matlab using the factory design

pattern [85]. The core principle is modularity. We develop independent objects for

each signal processing block in our experiments. For example, we create a "Precoder"

superclass that de�nes the generic abstract structure of precoder. We then implement

various subclasses such as zero-forcing (ZF) and maximum ratio transmission (MRT).

Similarly, we create separate classes for a variety of modulators, channels, PAs, and

other digital signal processing (DSP) blocks. Each speci�c implementation is designed

to be standalone to where it is fully featured and �exible enough to be used in a variety

of contexts.

However, simple modularity is not su�cient for creating a powerful, reusable li-

brary. To maximize the usefulness of the classes, we need to be able to connect any

module to any other module. For example, there may be cases where the precoder

class output is connected directly to a PA class input while in other scenarios there

is an additional DPD class in between. To make it to where all modules can easily

work with all others, we create a common interface. All modules exchange data in

the form of the "Signal" class. A Signal class object will contain a matrix of the

signal data at some point in the experiment as well as other useful context such as

the current sample rate and domain. Each core module in MIMOSA implements a

"use()" method that consumes a Signal and produces a Signal. Each core module

also contains a "requiredSampleRate" and "requiredDomain." In all "use()" methods,

we begin by calling the "matchThis(requiredDomain, requiredSampleRate)" method

in Signal. This makes it so that all blocks can communicate with the developer not
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needing to worry about the domain and sample rate throughout. For example, a pre-

coder may output a Signal in the frequency domain at a sample rate of 30.72 Msps.

We may then connect this to a DPD that is con�gured to require time domain data

at 122.88 Msps. Instead of the developer worrying about verifying the data at each

step in the signal processing pipeline, the DPD module in this example would see

that the incoming data is in the wrong domain and at the wrong sample rate and

would automatically perform the inverse fast Fourier transform (IFFT) and upsam-

pling. Through the use of this common interface throughout the MIMOSA library, we

can automate many of the transformations that can easily be overlooked and provide

simple error-checking on functions throughout. This feature reduces the amount of

bugs that are often introduced in "copy-paste" style development and allows for rapid

development of the core concepts being evaluated.

To build an application, the developer builds a "data�ow" that aggregates various

core modules. The data�ow "use()" method then passes data from block to block

throughout the data�ow. For example, a Signal object may �ow from modem to

precoder to PAs to a Channel to a UE modem in a data�ow. To maintain �exibility,

each core block may have multiple subclasses. At runtime, a param struct is passed

into the factory method of the core modules to instantiate the requested subclass

with some settings. For example, a param struct may dictate to the data�ow to

con�gure the Precoder as a ZF and to con�gure the PA to use the GMP subclass

with nonlinearity order seven. This structure allows the developer to rapidly test

and compare various versions with no code changes. These concepts can be seen in

Fig. 3.1, which shows the UML diagram for a subset of the available classes.
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3.1.3 Use Cases

MIMOSA is a �exible framework that can be used for a variety of simulation and

experimentation needs. In this thesis, we use MIMOSA in Section 4.1.2 to explore

PA variability. We also use the architecture to test the beamforming pattern using

a combination of real PAs and a simulated channel in Section 4.1.3. While we focus

on exploring the e�ect of nonlinearities in MIMO systems, the library could also be

used to easily compare precoding strategies and other link-level simulator tasks.

3.2 MIMOSApy

While MIMOSA allowed for initial exploration of the problem of MIMO nonlinearities,

the machine learning capabilities in matlab are somewhat limited. Throughout

the community, most machine learning tasks are performed using libraries that are

primarily for Python. For example, PyTorch is a powerful, general purpose tensor

processing and machine learning package from Meta AI that is widely used in AI

research. Hence, we then began to port much of the MIMOSA work to the Python

environment in the form of a python package we call MIMOSApy.

3.2.1 Background and Design Options

Before beginning development of an extension to MIMOSA for machine learning, we

considered multiple possible design options. The most critical choices include the

language and the tensor processing backend.

Matlab The �rst choice for building a system was Matlab. The primary ad-

vantage provided by Matlab is that it would allow us to build upon MIMOSA.

However, Matlab's machine learning packages are limited. The Rice Recon�gurable
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Eco-system for Next-generation End-to-end Wireless (RENEW) project also provides

an application programming interface (API) for Matlab.

Keras/Tensor�ow Keras is a popular interface library for python that provides an

easy-to-use API for utilizing the Tensor�ow machine learning engine [86]. While we

initially tested many applications using Keras, we found that it was not well suited for

custom applications and better for straightforward NN applications. Keras can utilize

a graphics processing unit (GPU) for hardware acceleration, and we can e�ortlessly

interface with RENEW using the Python libraries for RENEWLab.

PyTorch PyTorch is a machine learning library for python developed by Meta AI

[87]. While often not considered as concise as the Keras library, it provides more

control over the exact NN processing. In particular, PyTorch provides the ability to

perform gradients automatically over any arbitrary functions written with the library.

This ability allows us to easily perform optimization over an entire communication

system with PA models, channel models, etc., whereas other packages require per-

forming the neural-network training explicitly over neural networks. Because of this

�exibility, we choose to develop on this framework.

3.2.2 Software Architecture

MIMOSApy is mostly a clone of the original MIMOSA software framework. We

implement an object-oriented software library in python using the builder design

pattern [85]. The architecture is similar to MIMOSA, with the exception of swapping

the factory design pattern to the more general builder design pattern.

There is one critical di�erence throughout MIMOSApy when compared to MI-

MOSA. In our matlab implementation, all data uses a type of complex double.

While the data for a precoder matrix or signal may be encapsulated in our of our
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library classes, it is still using the matlab core type of a double. In our python im-

plementation, we make all of our data represented as a PyTorch tensor. While these

are usually single precision types, they allow us to leverage PyTorch tools anywhere

in our system. The critical advantage of this system is that because everything is a

tensor, the system automatically can keep track of gradients through all of our pro-

cessing. For example, because the channel matrix is stored as a tensor, whenever we

send data through a channel matrix, we can ultimately calculate some error metric

and perform a backpropagation back through the channel and any other block.

3.2.3 Integration with Renew

A key goal in this project is the ability to test with hardware. For testing with

hardware systems, we developed a connection to RENEW. To accomplish this, we

encapsulate the SoapySDR interface inside a subclass of the abstract interface Array

class. This allows for a user to connect their work by simply building an array class

and calling the TX/RX methods.

3.3 Conclusion

Software is a critical part of modern research. Many systems today are too mathemat-

ically intractable when considering the full complexity, such as high-order nonlinear

power ampli�ers operating on wideband systems. Hence, simulations are playing a

larger role in research. Moreover, AI and machine-learning is playing a critical step in

the future communications systems, which necessarily are implemented in software.

Researchers today should take the time to develop good software engineering princi-

ples in their experiments to promote good code reuse, modularity, and repeatability.

By developing MIMOSA and MIMOSApy, we hope to provide a platform that others
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can use to bootstraps their own research onto while supporting these ideals.
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Chapter 4

Initial Explorations

In this chapter, we explore the problem of power ampli�er (PA) nonlinearity in mas-

sive multiple-input, multiple-output (MIMO) systems before providing algorithmic

solutions in Chapter 5. We begin with measurements from a 16T MIMO platform

to characterize wideband PAs. Then we collect beamforming measurements from the

Rice Recon�gurable Eco-system for Next-generation End-to-end Wireless (RENEW)

platform. Finally, we develop mathematical models and perform simulations using

our MIMO Simulator with Ampli�ers (MIMOSA) platform from the previous chapter.

4.1 Measurements

4.1.1 MIMO PA Testbed

To explore the e�ects of nonlinearities in massive MIMO as well as other topics such

as cross-division duplexing (XDD) [19], we developed a state-of-the-art testbed. The

platform consists of four Xilinx ZCU208 development boards [88], driving 16 PAs..

The PAs are part of the NXP Rapid RF development boards [89]. The actual PA

used on the kit is an laterally-di�used metal-oxide semiconductor (LDMOS) Doherty
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Figure 4.1: Photos of the MIMO PA Testbed.
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Figure 4.2: Block Diagram of Testbed. There are 12 total RF coax connections
between each ZCU208 and the NXP PA array, a TX path, a RX path, and a feedback
path. We support a total of 16 TX and 16 RX paths.
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PA with a peak power of 43.2 dBm. These PA development boards have a dedicated

feedback path that is coupled to the PA output. Such a feedback is often used for

monitoring the output nonlinearities and digital predistortion (DPD) learning. A

custom interface board is attached to the FMC-HPC connectors of the ZCU208 to

perform the appropriate �ltering and interfacing between the RF SMA connector

ports and the eight digital-to-analog converters (DACs) and eight analog-to-digital

converters (ADCs). We connect the PA feedbacks for each PA into RX ports on the

interface boards to be sampled by the ADCs. The ZCU208 supports RF sampling

on the DAC and ADC. A custom �eld-programmable gate array (FPGA) image was

created to target the 3.5 GHz band with a maximum sampling rate of 491.52 Msps. A

photo of this platform is shown in Fig. 4.1, and a block diagram is shown in Fig. 4.2.

The system can hold 10 ms of baseband I/Q data for each stream in DDR DRAM.

We build an application programming interface (API) to control the testbed directly

into the MIMOSA framework discussed in Section 3.1. Matlab is used to perform

all signal processing, and TFTP is used to transfer the waveform into memory on

each board. A trigger signal is then sent for concurrent playback and capture, where

the trigger starts the data transmission from the DRAM through the sixteen DACs.

It simultaneously triggers the capture from the ADCs to the DRAM. The captured

data is then transferred back to Matlab for the post-processing that follows in the

remaining sections.

4.1.2 PA Variability

In this test, we seek to understand the variability that exists across an array of similar

PAs. Our testbed uses the NXP PAs outlined in the previous section [90]. While the

devices are identical parts, there may naturally be some variation that manifests itself

in the nonlinear models. This variation would potentially mean that unique inverse
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models for DPD must be created for each element in a MIMO array.

To perform this experiment, we excited each PA one at a time with a 100 MHz 5G

new radio (NR) signal and sampled the output at 491.52 MHz for an approximately

5x upsample factor. Each PA was targeted at a 30 dBm output power. However, there

are di�erences in the exact PA output powers due to unaccounted-for individual losses

speci�c to each TX path. For example, there may be minor di�erences in the exact

output power due to di�erent cables, di�erent cable lengths, di�erent tightness of RF

connectors, and natural di�erences in components.

In Table 4.1, we show the output adjacent channel leakage ratio (ACLR) of the

16 PAs in the testbed. We use the feedback paths in the testbed to capture the

PA output signals, and we perform the measurement in Matlab. From this, it can

be seen that these Doherty PAs are highly nonlinear and violate the 3rd Generation

Partnership Project (3GPP) spectral emission mask of -35 dBc by 20 dB. The power

spectral density (PSD) output of the PAs is shown in Fig. 4.3.

We then calculate a memory polynomial (MP) model for each PA. We consider

a P = 7,M = 1 model and �t the input/output data using least squares. As will

be shown in subsequent analysis, the phase of the MP coe�cients will ultimately

determine how coherently the nonlinearities combine. We show the range of the

phases in the boxplot in Fig. 4.4, which shows how similar the PA models are.

From this study, we can see a strong similarity between all the models. Table

4.1 shows similar ACLR performance, Fig. 4.3 shows a similar output spectrum, and

Fig. 4.4 shows similar DPD coe�cients. However, to meet the stringent emission

mask requirements, it is likely that unique models would need to be captured. For

future work, a meaningful additional experiment would be to examine the sensitivity

of the DPD performance when using an average model. If an average model can

predistort e�ectively, then the number of ADCs for feedback DPD learning could
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Table 4.1: PA Array ACLR Comparison

PA Index L1 (dBc) U1 (dBc) PA Index L1 (dBc) U1 (dBc)

1 -25.5 -26.5 9 -26.2 -26.5

2 -24.0 -28.1 10 -26.0 -27.3

3 -25.3 -26.7 11 -25.5 -29.0

4 -24.6 -27.7 12 -24.5 -28.7

5 -25.0 -27.3 13 -27.9 -29.7

6 -26.1 -27.9 14 -25.6 -27.5

7 -24.9 -27.3 15 -26.4 -28.6

8 -26.5 -28.3 16 -27.3 -31.0
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Figure 4.3: Example PSD for the set of 16 PAs. Each PA is driven with a 100 MHz
5G NR OFDM signal. From this plot, the overall relative similarity in the spectrum
can be seen.
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Figure 4.4: Variation of phases for each polynomial term in a P = 7,M = 1 memory
polynomial.

potentially be reduced. Moreover, a single model could be stored in memory, reducing

the implementation requirements.

4.1.3 Nonlinear Behavior over a Simulated Channel

In the previous section we observed similarities in the PA models. However, this

tells us little about the behavior in an actual massive MIMO platform where it is

possible to have coherent combining of signals at some points far�eld of the array.

In this section, we expand on the results in Section 4.1.2 to understand the behavior

over-the-air (OTA).

Ideally, we would be able to capture the spectrum OTA at every point in space

and report measurements on the ACLR. However, we can practically only support a

�nite number of observation antennas. A limited setup of a few observation receivers

would result in a limited picture of the array behavior. Moreover, only a small sector

of angles would be possible to observe based on the anechoic chamber geometry, where

the testbed is placed. We instead opt for using the real PA array from our testbed with

a simulated channel. Using a simulated channel allows us to have a complete channel
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model in every direction so that we can more completely analyze the performance.

With the simulated channel, we also gain the advantage of having perfect channel state

information (CSI) to calculate the zero-forcing (ZF) and maximum ratio transmission

(MRT) precoders, eliminating another possible source of error from the work.

In Matlab, we create OFDM data for one or multiple users, as outlined in Sec-

tion 2.1.1. We utilize QUAsi Deterministic RadIo channel GenerAtor (QuaDRiGa) to

create a line-of-sight (LoS) channel model for a uniform linear array (ULA) operating

at 3.5 GHz [91]. We transmit data through the platform, similar to Section 4.1.2 and

collect the PA output via the feedback ADCs. The baseband data is copied back to

the host PC for post processing in Matlab.

Single User

To evaluate the behavior of the adjacent channel power (ACP), we begin with beam-

forming to a single user. We create an LoS channel in QuaDRiGa, simulating the

channel to a user placed at 70° to the axis of the array.

The results are shown in Fig. 4.5. In Fig. 4.5a, we plot the beamgrid for the data

collected from the feedback of all of the PAs. This plot allows us to evaluate the

angle of departure (AoD) for the inband and out-of-band (OOB) energy. The inband

data is 1200, 15 kHz subcarriers. From this plot, it is clear that the OOB energy is

dominant in the direction of the main beam at 70°. We then computed the ACLR

for each angle. Typically, ACLR is de�ned as the ratio of in-band and out-of-band

power. However, in this case, the in-band power is also a function of angle due to the

beamforming. We therefore use the beamformed in-band power as the reference level

for the calculation,

ACLR(θ) = Puser − Padjacent(θ) (dB). (4.1)
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(a) Beamgrid showing the array responce in all directions.
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Figure 4.5: Beamforming results for single-user measurement. The ACLR is highest
in the direction of the user at 70° with a value of -32.7 and -31.9 dBc for the L1 and
U1 adjacent channels, respectively.
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The result is plotted in Fig. 4.5b. Here, the ACLR reaches -32.7 and -31.9 dBc for

the L1 and U1 adjacent channels, respectively. In other directions, the ACLR is over

10 dB lower. From this result, we can clearly see that the ACP coherently combines

in the direction of the user.

MU-MIMO

We then extend the previous experiment by beamforming to two users. We create an

LoS channel in QuaDRiGa, simulating the channel to users placed at 70° and 100° to

the axis of the array.

The results are shown in Fig. 4.6. In Fig. 4.6a, we plot the beamgrid for the data

collected on the output of all of the PAs. The inband data is again 1200, 15 kHz

subcarriers centered around 0 Hz. From this plot, it is clear that the OOB energy

is dominant in the direction of the main beams at 70° and 100°. However, there are

additional spurious beams that appear.

To examine the behavior more closely, we plot the ACLR versus the angle in

Fig. 4.6b. Similar to the single-user case, the ACLR peaks in the direction of the

users. However, additional beams are created in the multi-user (MU) case, similar to

(4.9) and (4.10), which will be presented later in this chapter. The peaks are slightly

di�erent for the U1 and L1 channels due to the two channels existing at di�erent

frequencies. On average, they appear at approximately 30° and 134°. According to

Eq. (4.12), these beams were predicted to appear at 30.9° and 133.6 °. The discrepancy

between the predicted value and the measured value is likely due to a combination of

e�ects. Most notably, Eq. (4.12) is based on a narrowband channel. Other possible

contributors to the error include the presence of higher-order nonlinearities and mem-

ory e�ects. One interesting �nding in this measurement is that the ACLR throughout

space is better than ACLR at any particular PA, as shown in Table 4.1. This is to
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(a) Beamgrid showing the array responce in all directions.
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Figure 4.6: Beamforming results for two-user measurement. The users are at 70° and
100°. While the OOB energy is dominant in the directions of the users, a notable
out-of-beam emission occurs around 30° and 134°.
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be expected as the ACLR is not intentionally beamformed and hence does not expe-

rience the same beamforming gain as the inband signal. This �nding suggests that

lower-complexity DPD models may be su�cient for some scenarios.

4.1.4 Renew Testing

To further examine the behavior of OOB emissions, we performed a series of measure-

ments using RENEW. The following subsections present an overview of the platform

and the testing performed.

4.1.5 RENEW Setup

RENEW is a massive MIMO platform developed for research purposes at Rice Uni-

versity[29]. It is constructed using a series of software-de�ned radios (SDRs) that

are each referred to as an Iris [30]. While a real-time �ow for operating RENEW

exists, known as Agora, it does not easily allow for rapid prototyping as it is a large

C/C++ project [92]. Instead, we opt to use the RenewLab �ow for developing a

non-realtime infrastructure for our tests.

Limitations While RENEW allows for a fully programmable massive MIMO sys-

tem, there are a few tradeo�s. Firstly, a limited sample rate is available. While

the Lime Microsystem's radio can support up to 56 MHz of contiguous bandwidth,

system reliability is a�ected when choosing bandwidths greater than 10 MHz. The

LMS7002M also implements a digital intermediate frequency (IF). Currently, there is

a strong image that is only 20 dB below the primary carrier caused by I/Q imbalance.

While this is correctable through calibration procedures, this is beyond the scope of

this work. The system's output power per PA is approximately 6 dBm. While the

Citizens Broadband Radio Service (CBRS) radio frequency (RF) frontends that are
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being used can support up to 28 dBm, the available gain is limited to protect the

hardware, but can be undesirable when studying PA behavior. Finally, when using

RENEWLab, we load samples into the FPGA system's BRAM. Due to limitations in

BRAM, a downlink slot must be less than 4096 samples.

4.1.6 Example PA Measurement

Before understanding the MIMO behavior of the array, we �rst seek to characterize

an example PA in the system. Using RenewLab and MIMOSApy, we build an LTE

signal with a 3 MHz channel. We then transmit out of a single Iris in the RENEW

base station (BS) while connected to a calibrated spectrum analyzer. We �nd that

the output power is 6 dBm. with an ACLR of -30.05 dBc and -30.99 dBc in the �rst

lower and upper adjacent channels. This measurement is shown in Fig. 4.7.

4.1.7 Measurement of OOB Radiation

To perform the measurement of radiation with respect to angle, we ideally need to

collect an in�nite number of measurements concurrently along an arc of a constant

distance from the BS. However, this is not feasible. In this section we detail our

measurement methodology in the absence of a system with in�nite antennas.

Firstly, a RenewLab MIMOSApy application was written in Python to perform

the following: 1. Construct a waveform for testing. 2. Construct a pilot sequence

that is robust against carrier frequency o�set (CFO) and other impairments. 3. Mea-

sure the channel at a remote user equipment (UE) that is not synchronized to the

transmitter. 4. Precode using MRT at the BS and transmit continuously so that the

spectrum can be collected.
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Figure 4.7: Output Spectrum of RENEW. The RENEW PA is set to an output power
of 6 dB. The ACLR is -31 dBc on each of the �rst adjacent channels. The true BB
center frequency is seen as the impulse, and an image is present opposite of the center
frequency.
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Waveform Design While using RENEW, we choose to design a waveform with

su�cient upsampling factor to potentially support DPD. Due to the previously stated

bandwidth limitations, we used an LTE waveform designed for a 1.4 MHz channel

sampled at 7.68 Msps to provide over 5x upsampling. To �t the sample constraint,

we used �ve symbols, each with 72 subcarriers.

Time Synchronization To transmit using RENEWLab, the BS normally trans-

mits a beacon. The UE FPGA design contains a correlator that will search for the

beacon when triggered. However, we found this to be unreliable and opted for a

software corrector. The BS is programmed to repeat the DL slot for a full 10 sec-

onds. The UL is triggered to start capturing during this transmit window. Then in

MIMOSApy, we perform a crosscorrelation to �nd the start of one DL slot.

Pilot Sequence, Channel Learning, and Precoding To learn the channel, we

transmit known signals on each antenna, where each antenna transmits on a subset of

distinct subcarriers. By having all antennas transmit concurrently, impairments that

are time dependent such as CFO can be avoided. We postprocess the UE captured

waveform to search for the pilot waveform. Once synchronized, the channel per

subcarrier can be calculated, interpolating between subcarriers for a single antenna.

Spectrum Measurement Instead, we set up a mobile spectrum analyzer to record

the channel power in the main and adjacent channels, integrated over the 1.4 MHz

channels. We then start recording at the spectrum analyzer and walk at a constant

pace in a semicircle around the array. These measurements are likely a�ected by

the presence of the human moving through the environment holding the spectrum

analyzer.
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(a) Indoor Testing Scenario. (b) Outoor Testing Scenario.

Figure 4.8: RENEW OTA testing setups for measuring OOB radiation.

Indoor Beamforming We place a UE node approximately 5 m at 70 degrees from

the plane of the array. The UE operates on battery power and uses a long ethernet

cable as a control backhaul to the server.

Outdoor Beamforming We place a UE node approximately 20 m in front of the

array. The UE operates on battery power and uses a long ethernet cable as a control

backhaul to the server.

From these experiments, we can clearly see beamforming to our user of the main in-

band data signal as well as the OOB emissions. These results are similar to the tests

from Section 4.1.3, however are less precise due to the measurement methodology.

For future study, one could perform similar tests with concurrent measurements from

multiple UE nodes as well as precoding for MU-MIMO.
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Figure 4.9: Indoor RENEW spectrum beamforming measurement where the user is
approximately at 70 degrees.
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Figure 4.10: Outdoor RENEW spectrum beamforming measurement where the user
is approximately at 90 degrees.
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4.2 Models

4.2.1 Spatial Intermodulation

The question of how the unintended ACP is radiated in MIMO systems has seen

recent attention in the literature [80], [93]�[95]. However, the analysis is often only

done to some mathematical conclusions without providing any practical answer about

which direction the spurious beams point. Ultimately, the answer to this question

will depend on the array geometry considered and the precoding scheme. However,

we will answer this question for a half-wavelength spaced uniform linear array (ULA)

with MRT beamforming in an LoS channel.

To build our analysis, we consider a multi-tone signal. Consider two users with

incident angles at θ1 and θ2. Assuming a planar wave model, the channel vector to

the i-th user can be written as,

[hi]n =
[
e−jπn cos θi

]
, (4.2)

where n = 0, ..., N − 1 indexes the base station antenna [96]. The MRT precoder, pi,

is then formulated via the complex conjugate of Eq. (4.2).

Similar to [95], we consider the case of transmitting I/Q modulated data tone to

each user. The I/Q modulation for each user is given through the amplitude and

phase modulations, Ai(k) and γi(k). After precoding, the composite baseband signal

at each PA input would be,

xn(k) = A1(k)e
j(γ1(k)+ϕ1,n) + A2(k)e

j(γ2(k)+ϕ2,n), (4.3)

where ϕi,n is the phase shift due to precoding for the i-th user on the n-th antenna,
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given as

ϕi,n = πn cos θi. (4.4)

One popular model used for behavioral modeling and predistortion is the MP and

its extension, the generalized memory polynomial (GMP)[42]. The MP is given as,

x̂(k) =
P∑

p=1

M∑
m=0

αp,mx(k −m) |x(k −m)|p−1 , (4.5)

where P is the maximum nonlinear order, M is the number of memory taps, k is the

sample index, and αp,m is a complex scalar coe�cient corresponding to a particular

device.

While in Section 4.1.2, high-order MP PAs with memory are used, in our analysis,

we consider the following memoryless third-order model for mathematical tractability,

x̂(k) = x(k) + αnx(k)|x(k)|2, (4.6)

where αn is the complex coe�cient speci�c to the model of PA n. After Eq. (4.3) is

substituted into Eq. (4.6), we get the output of each PA as

yn(k) =

(
A1 +

3αn

2
A1A

2
2 +

3αn

4
A3

1

)
ej(γ1+ϕ1,n) (4.7)

+

(
A2 +

3αn

2
A2

1A2 +
3αn

4
A3

2

)
ej(γ2+ϕ2,n) (4.8)

+
3αn

4
A1A

2
2e

j(2γ2−γ1+2ϕ1,n−ϕ2,n) (4.9)

+
3αn

4
A2

1A2e
j(2γ1−γ2+2ϕ2,n−ϕ1,n). (4.10)

In the above, the sample index, k, is dropped from the amplitude and phase modu-

lation terms for compactness. The goal is then to �nd the physical directions with
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respect to the array, θ̂, that correspond with the spurious beams caused by the terms

from (4.9) and (4.10). Without loss of generality, we focus on the term from (4.9)

and look for the angle that maximizes the array response,

θ̂ = argmax
θ

N−1∑
n=0

3αnA1A
2
2

4
ej(2γ2−γ1+2ϕ1,n−ϕ2,n−πn cos θ). (4.11)

In cases where all PAs have identical phases on αn, the coe�cient can be eliminated

as the phase shift would be common across all elements in the array. Otherwise,

as they become more randomly distributed, the less coherently the intermodulations

combine [95]. To solve the above, we note that the beamforming direction does not

depend on the sample index, k, and set it to zero. For each Ai(k = 0), we have a real-

valued scalar. Being without phase, it has no e�ect on the beamforming direction.

For the phase modulation terms, γi(k = 0), we have a constant phase shift applied

uniformly across all elements, so it too can be disregarded. We note that the sum will

be maximized when, if possible, all the exponential terms are cophased. We choose to

force the phase of each exponential term to be zero and solve for the θ that allows for

that. With the above assumptions and replacing the ϕ terms with their exact values

from Eq. (4.4), we arrive at the direction of interest for the term from (4.9) as,

θ̂ = cos−1 (2 cos θ1 − cos θ2) . (4.12)

A similar result was �rst published in [97]. However [97] and other works do not

consider the case where the inverse cosine is unde�ned. While [97] states that any

intermodulation falling outside the window of the 0�180 degrees will not radiate, we

�nd through our MIMOSA numerical simulations that these beams in fact wrap back

around. To ensure that the previous equation falls within the domain of the inverse
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cosine, the following can be performed.

θ̂ = cos−1 (2 cos θ1 − cos θ2(mod2)− 1) . (4.13)

The above has been empirically veri�ed against our simulation platform.

While the two-tone analysis is simple, the conclusions scale up similarly to OFDM

[95]. When scaling up to more than two users, the spurious beams will scale up with

every pair and triple of users. The main idea is to �nd the number of terms similar

to (4.9) and (4.10) as more users are added. From analysis similar to deriving (4.9)

and (4.10), it can be shown that there will be a third-order intermodulation (IM3)

term for each pair and triple of user signals. In the case of the previous two-tone, a

three-user system will have terms with phases of the form as ϕ1,n + ϕ2,n − ϕ3,n. This

triple can be arranged in three unique ways, and, similarly, each pair of terms can be

arranged in two ways. Combining these ideas, the upper bound on the total number

of spurious beams created by the IM3 between user streams is given as,

nspurious beams = 2

(
U

2

)
+ 3

(
U

3

)
. (4.14)

This expression is considered an upper bound since, for speci�c user angles, the

spurious beams may overlap. For example, when users are regularly spaced at some

angle, these spurious beams may be in the same direction and appear as a single

beam. There will be more terms and spurious beams for higher-order nonlinearities,

but the third-order intermodulations are typically the highest magnitude and, hence,

are the primary concern.
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4.2.2 Complexity of DPD per Antenna

A primary motivation for this work is to reduce the complexity of the predistortion

for fully-digital massive MIMO arrays. In this section, we develop the baseline for

the application complexity of a GMP-based DPD [42] per antenna.

There are various design tradeo�s that could be deployed in practice when imple-

menting a DPD. For 5G systems with wide bandwidths, the overall throughput will

be most critical. So in this analysis, we consider a fully pipelined design with maxi-

mum parallelism for a single stream. In practice, if a given clock rate can not support

the desired sample rate, the designer may further parallelize to where multiple output

samples are computed in parallel per clock cycle. However, this dramatically increases

the area requirements of the design.

From Eq. (2.3), it can be seen that there are three possible loops, the polynomial

order, the memory taps, and the lag/lead. The main overall structure of the design

is shown in Fig. 4.11. Each polynomial �branch� of the memory polynomial corre-

sponding to nonlinear order p computes x(n)|x(n)|p−1, and there is a branch for each

p in the design. This computation from each branch is passed to an �nite-impulse-

responce (FIR) �lter with complex taps. Three multiplications are used for each

complex multiplication in each �lter. We will use these assumptions when computing

complexity comparisons in Chapter 5.

4.3 Simulations

While the mathematical models developed in the prior section provide valuable in-

sight, it becomes intractable to answer many important questions. For MU-MIMO

with OFDM and high-order polynomials, deriving closed-form expressions would not

be bene�cial as the necessary complexity in the model would obfuscate any possible
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Figure 4.11: General structure of the high-throughput, low-latency, memory polyno-
mial FPGA implementation. Adapted from [12].

conclusions.

To solve this problem, we utilize MIMOSA andMIMOSA for Python (MIMOSApy)

from Chapter 3. Here, users can be arbitrarily placed in an environment, and a chan-

nel model can be generated via QuaDRiGa, using the 3GPP 38.901 rural macrocell

(RMa) model, for example. A ULA can be created with arbitrary size and with arbi-

trary PA models at each antenna. Then OFDM processing can be performed for each

user with MRT or ZF precoding. This simulation platform can provide tremendous

insight on the expected behavior of a realistic MIMO system.

For these simulations, we include a memory polynomial measured in Section 4.1.2

as the default polynomial coe�cients. In cases where we introduce variability, we add

the speci�ed variability to each coe�cient to create a random Gaussian distribution

in the coe�cient centered around the measured value.

4.3.1 Simulation Example

With the simulation platform, a wide variety of data and plots can be generated

for each test. However, for each of the subsequent tests, we can not show the full

set of information as this would be overwhelming. In this subsection, we provide a
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Table 4.2: Nonlinear MIMO Link-level Simulation Parameters

Parameter Value

Number of Antennas 64

Number of Users 4

User Locations (degrees) 70, 85, 100, 125;

PA Order, PA Memory 7, 4

PA Variability 10%

Channel QuaDRiGa 3GPP 38.901 RMa

Precoding ZF

Center Frequency 3.5 GHz

Active Subcarriers 3240

Subcarrier Spacing 30 kHz

Table 4.3: Nonlinear MIMO Link-level Simulation Results

Parameter Value

Average PA ACLR -26.5

Worst Far-�eld ACLR -30.9

Number of violating directions 19

complete set of results for one representative scenario. We then dissect each aspect

into simpli�ed tests and present the relevant metrics that provide the most insight.

In Table 4.2, we show the simulation parameters for this test. In Fig. 4.12, we

show the beamgrid plot. Here, the primary beams and nonlinearity can be seen at

70°, 85°, 100°, and 125°. Throughout the angular domain, various other peaks appear.

4.3.2 ACLR Versus the PA Variability

In this section, we focus on the e�ect of PA variability. We consider a MP PA where

the phase of the third-order coe�cients are allowed to vary by various amounts. For

this particular model, the ACLR of each PA is �xed to approximately -33 dBc in all

tests. While the ACLR of each PA remains constant, we see in Fig. 4.14 that the

e�ective ACLR in the far�eld decreases. As the phase varies, the third-order term
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Figure 4.12: Example beamgrid showing the energy in each resource element and
AoD from the array for the four user parameter case shown in Table 4.2.
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Figure 4.13: Example beamplot of integrated channel powers for the four users at
70°, 85°, 100°, and 125°.
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Figure 4.14: As the variance in the phase of the coe�cients increases, the maximum
far�eld ACLR decreases.

sees less of the array gain, con�rming our conjecture.

4.4 Conclusion

In this chapter, we performed a variety of initial explorations to better understand

the e�ect of nonlinearities in a massive MIMO array. Firstly, we measured the vari-

ability in an actual Doherty PA array and found that the coe�cients were overall

similar. When projecting this data through a simulated channel, we found that the

OOB emissions would coherently combine. We then showed that a third-order non-

linearity would coherently combine not only in the direction of users, but also in other

directions that were mathematically predictable. We then veri�ed this �nding using

MIMOSA for a MU-MIMO scenario with four users. In the following chapter, we will

explore a novel DPD scheme for MU-MIMO that is performed before the precoder.
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Chapter 5

Virtual DPD Solutions

In massive multiple-input, multiple-output (MIMO) arrays, there may be hundreds of

active elements. Using traditional digital predistortion (DPD) schemes, we would lin-

earize each, which creates a challenging computational burden. Based on the analysis

done in the previous chapters, we seek in this chapter to explore new predistortion

methods tailored to massive MIMO. In particular, we seek to move the predistorter to

exist before the precoder, creating a novel scheme that we call virtual DPD (vDPD).

By placing the predistorter before the precoder, we relax the DPD requirement per

base station (BS), allowing it to scale, in principle, with the number of users instead

of the number of antennas. To undertake this challenging task, we embarked on

a three-step process. Firstly, in Section 5.1, we worked on developing a DPD sys-

tem that could work in the frequency domain for single-input, single-output (SISO)

systems. This compatibility with frequency domain processing is necessary because

most precoders in modern cellular systems are frequency-domain based for orthogo-

nal frequency-division multiplexing (OFDM). Secondly, in Section 5.2, we scale this

idea to operate in a multiple-input, single-output (MISO) case, where many antennas

transmit to a single-user. Finally, in Section 5.3, we look at the case of a massive

multi-user (MU)-MIMO array where we improve the out-of-band (OOB) emissions
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not only in the user beams but also for any spurious beams.

5.1 vDPD for Single Antenna � ODPD

1 In 5G and other popular radio access technologies (RATs), the baseband signal

is constructed in the frequency domain as OFDM. Most DPD schemes operate in

the time domain, completely agnostic to the modulation scheme. While this allows

most DPDs algorithms to be highly portable across systems, it is problematic for

easy integration before frequency-domain precoders used in massive MIMO. In this

section, we address this problem in the single-antenna case by developing a scheme

that operates on individual subcarriers, with the goal of portability to before the

precoder in MIMO in later sections of this chapter.

This section introduces OFDM DPD (ODPD), a novel DPD method for OFDM

waveforms that exploits the guard-band subcarriers typically present in OFDM-based

systems. In particular, instead of transmitting zeros on the guard-band subcarriers,

we iteratively tune their values to reduce the adjacent channel leakage ratio (ACLR)

on a per-OFDM-symbol basis. To determine the appropriate values of the guard-band

subcarriers, one needs only a forward model of the power ampli�er (PA), as opposed

to the inverse model needed in most DPD solutions. Our experimental measurements

using a commercial Doherty PA platform shows that we can achieve linearization that

outperforms a state-of-the-art polynomial model. Moreover, when combined with an

neural network (NN)-based PA model, our OFDM-based DPD can perform DPD with

as little as a 2x upsampling/oversampling rate2 as opposed to the 5x upsample rate

typically considered in polynomial-based DPD solutions [42] [5]. The lower sampling

1This work was originally presented in [14].
2While upsampling refers to the digital signal processing (DSP) process of interpolating and

oversampling refers to the relative rate of the analog-to-digital converter (ADC) sampling rate to a
signal's Nyquist rate, we will use the terms interchangeably throughout this section for brevity.
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Figure 5.1: Overview of ODPD algorithm. For each symbol, we transmit through a
PA model, f̂ , to see the error in the guard-band subcarriers in the set Z. The error
is subtracted to form the new frequency-domain input. After su�cient iterations, the
symbol can be transmitted through the real PA. In this �gure, we omit the DAC and
up-converter after the �nal IFFT for simplicity.

rate translates into lower energy consumption and reduced system complexity.

Similar ideas can be found in the literature, though not directly applied to DPD.

For example, a similar technique is used for peak-to-average power ratio (PAPR)

reduction in [98]. In [99], the authors also utilize the guard bands for cancellation

carriers, but their goal is OFDM sidelobe suppression and not correction of PA non-

linearities. The learning iterations of our method are similar to the iterative learning

control (ILC) DPD method used in [58]. However, in our method, we adapt it to

operate directly on the guard-band subcarriers in the frequency domain.

5.1.1 ODPD Algorithm

Let X ∈ CW denote a vector of symbols that correspond to one OFDM symbol.

W ∈ N denotes the total number of subcarriers, which is typically a power of two

for e�cient fast Fourier transform (FFT) computations. In OFDM systems, D ∈ N

where D < W subcarriers carry information, and there are typically K = W − D

subcarriers that map to the edge of the spectrum, which are zero-�lled and which form
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the guard band. Let the set of zero-�lled subcarriers in the guard band be denoted

by Z ⊂ {0, . . . ,W − 1}. Our proposed method's key idea is to replace the zero-�lled

subcarriers with tuned values that depend on the remaining D data subcarriers to

reduce the OOB emissions directly.

For simplicity, we restrict our description to a single OFDM symbol. However, our

method can be extended to multiple symbols by applying ODPD for each symbol and

relying on the windowing technique typically applied in OFDM systems to improve

the spectrum at symbol boundaries [25]. Let f(·) denote the baseband equivalent of

the nonlinear PA transfer function. Then, the frequency-domain output of the PA,

denoted by Y, is 1

Y = FFT (f (IFFT(X)))) . (5.1)

Assuming that an estimate of the PA transfer function, f̂(·), is created, we can it-

eratively estimate for each subcarrier k ∈ Z the PA output, Ŷk, and predistort it to

cancel out the tone. By iterating on each subcarrier, we heuristically can think of this

as injecting the subcarrier with the energy of the opposite phase so that there can be

a net cancellation. However, the exact value depends on the intermodulations of all

subcarriers. Hence multiple iterations may be needed to account for new intermod-

ulations due to previous iterations. At iteration i ∈ {0, . . . , I − 1}, in our proposed

method, we �rst use (5.1) to calculate Ŷ(i) based on X(i). Then, we calculate the

di�erences between each Ŷ
(i)
k , k ∈ Z, and the desired output X̂k, k ∈ Z. Finally, we

adapt each guard tone X
(i+1)
k , k ∈ Z, as follows

X
(i+1)
k = X

(i)
k − µŶ

(i)
k , ∀k ∈ Z, (5.2)

1The cyclic pre�x (CP) is also added after the IFFT and removed before the FFT. We do not
model the CP here, though a 4.7 µs CP is used in the �nal results.
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where µ is a step size and X(0) = X.

The PA model f̂(·) can be constructed through various methods. For example,

a generalized memory polynomial (GMP) or a NN [12] may be attractive solutions.

Moreover, in certain time-division duplexing (TDD) systems, it could be possible to

train symbols using the actual PA while the radio is listening. While in this work we

highlight the use of an NN-based PA model, we brie�y discuss a GMP implementation

in the following subsection.

GMP PA Model

The GMP from (2.3) can be used as a forward model of the PA, f̂(n). When using

the GMP, a least-squares model can also be used to learn the set of parameters.

However, contrary to the indirect learning architecture (ILA) approach, the forward

model is not as susceptible to noise. A fundamental limit of ODPD performance is

the accuracy of, f̂ . Hence, su�cient upsampling would be required to avoid aliasing

of high order terms when using a GMP.

Neural Network PA Model

While high-order polynomials su�er from aliasing when using low sample rates [5],

[42], NNs do not necessarily have the same limitations as they are model-free.

We consider a multilayer feedforward NN with H hidden layers and N neurons

in each hidden layer. M time-domain inputs are given to the network to account for

memory e�ects in the PA. For each sample, the real and imaginary components enter

the NN on separate neurons. The general architecture is shown within the ODPD

system in Fig. 5.1.

Let g denote a nonlinear activation function, and letWi and bi denote the weights

matrices and bias vectors corresponding to the ith layer in the NN. The output of
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the �rst hidden layer at time instant n is

h1(n) = g


W1



ℜ(x(n))

ℑ(x(n))
...

ℜ(x(n−M + 1))

ℑ(x(n−M + 1))


+ b1


. (5.3)

The output of hidden layer i ≥ 2 is

hi(n) = g (Wihi−1(n) + bi) . (5.4)

Finally, the output of the network after hidden layer H is

x̂(n) = WH+1hH + bH+1, (5.5)

where the �rst and second elements of x̂ represent the real and imaginary part of the

signal, respectively. The NNs can be e�ciently realized as a series of matrix-vector

multiplies. Complexity remains low when considering a recti�ed linear unit (ReLU)

activation function, shown in Eq. (5.6), which can be implemented with a simple

multiplexer. To further reduce the computational burden, a designer could consider

options such as pruning and quantization,

ReLU(x) = max(0, x). (5.6)
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Figure 5.2: Photo of the measurement setup. A signal generated in Matlab is
uploaded to the signal generator, where it is transmitted at 3.5 GHz through the PA
evaluation board into the UXA signal analyzer where the ACLR is measured.

5.1.2 Computational Complexity

The computational complexity of the ODPD scheme can be divided into two com-

ponents, the complexity of the iterative application of IFFTs and FFTs, and the

complexity of the forward model, f̂ . We consider the number of real multiplications

as a proxy for the complexity of the ODPD and count them as

nmults, FFT = 4IW log2(W ), (5.7)

nmults, ODPD = nmults, FFT + nmults,f̂ . (5.8)

Here, nmults, FFT counts the number of multiplications due to the added FFTs and

nmults,f̂ is the forward model complexity. We assume four real multiplies per complex

multiply.
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Table 5.1: ACLR Measurements after ODPD

Case L1 (dBc) Main (dBm) R1 (dBc)

No DPD -30.8 35.3 -30.6

GMP

U = 2 -30.5 35.2 -29.6

U = 3 -37.8 35.2 -36.4

U = 4 -41.3 35.2 -41.0

U = 5 -41.3 35.2 -41.3

NN, U = 2

N = 10, I = 1 -37.2 35.2 -36.7

N = 10, I = 2 -38.0 35.2 -37.8

N = 20, I = 1 -39.1 35.3 -38.7

N = 20, I = 2 -40.1 35.2 -40.3

N = 40, I = 1 -41.7 35.2 -41.2

N = 40, I = 2 -42.7 35.1 -43.1

5.1.3 Results

In this section, we present experimental results to showcase the performance of our

proposed ODPD method, and we compare it with a standard polynomial-based DPD

method 1.

An example measurement using the ODPD method with a N = 40 NN is shown

in Fig. 5.3 where I = 1. The input power for this test was 6 dBm, the in-band

PA output power was 35.3 dBm (which corresponds to 29.3 dB gain from the PA).

Table 5.1 shows the full measurement results for each DPD. Here, we show that the

Doherty PA was highly nonlinear with a starting ACLR of -30.8 dBc on the left

adjacent carrier. At a low oversampling rate of U = 2, the GMP is unable to resolve

the high-order nonlinearities leading to an overall poor �t that causes the ACLR to

1Achieved ACLR performance is limited in this experiment due to measuring over the full 20 MHz
without guard bands (as opposed to measuring just in 18 MHz) and lack of windowing between
symbols.
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Figure 5.3: Measurement result from the Doherty PA for the ODPD with I = 2
iterations and N = 40 neurons. The blue is the 20 MHz associated with the main
carrier, while the green on the left and right correspond to the 20 MHz adjacent
channels.

degrade. At U ≥ 3 the ACLR was able to improve with the GMP.

However, the NN-based ODPD was able to improve the ACLR for each considered

architecture while only using an oversampling rate of U = 2. Moreover, the N = 40

architecture is able to outperform the best U = 5 case from the GMP.

The performance of the ODPD depends on the precision of the forward model.

However, there is a tradeo� between complexity and precision. Therefore, careful

tuning of the forward model is necessary. While there are many viable architectures

of NNs that can be tested, we restrict our analysis to three. We restrict the NN so

that M = 4 and H = 1 and vary the number of neurons in the hidden layer to be

10, 20, 40. Using the PA input/output data collected from the testbed, we train each

NN in Matlab.

In Fig. 5.4, we show the complexity in terms of the number of real multiplications

per OFDM symbol of the ODPD algorithm for the three considered NNs with I = 1

and I = 2 total iterations. We compare this to the GMP ILA-DPD application com-

plexity in red which is obtained by summing the number of multiplications in (2.3).

The ODPD cases include the complexity of each new FFT and the PA model. The

GMP ILA-DPD case includes the complexity of the GMP as well as the upsampling
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complexity. Upsampling is assumed to be done via �lling with zeros and passing

through a low-pass-�lter with 51 taps.

Fig. 5.5 shows the performance from Table 5.1 for the sake of comparison to

Fig. 5.4. When trying to get the most performance per computation, there are a few

takeaways. Firstly, the performance of the U = 5 GMP can be matched by a U = 2

NN-based ODPD with 34.8% the number of multiplications. Secondly, it can be seen

in Fig. 5.4 that for the considered NN architectures, a larger NN architecture was often

less computationally intensive than more ODPD iterations on a less complex NN. It

can be seen in Fig. 5.5 that the more complex NN with I = 1 gave a better result than

the less complex NN with I = 2. Hence, improving the NN (or, more generally, the

forward PA model) is more worthwhile than performing additional ODPD iterations.

5.1.4 Summary of Single Antenna ODPD

In this section, we introduced an OFDM-based DPD (ODPD) method that takes

advantage of the guard-band subcarriers to predistort in the frequency domain. Our

proposed method of predistortion does not require the estimation of an inverse PA

model and was able to linearize our test PA as e�ectively as state-of-the-art meth-

ods. Using an NN-based forward model, we showed that this performance could be

achieved with 34.8% fewer multiplications and a lower oversampling rate for the DPD

application.

5.2 vDPD for Single User/Many Antenna

1 The next step along our quest for a massive MIMO DPD scheme was a massive

MISO DPD scheme. In this section, we translate the work from the previous section

to exist in a many antenna system where the predistortion is performed before the

1A version of this work was originally presented in [16].
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precoder. In the mathematical and simulation investigations, we showed that the

nonlinearity follows the main beam in the case of a single beam. In this section,

we treat that e�ective nonlinearity along that beam as if it were a single virtual PA

(vPA) and linearize that vPA with a vDPD scheme based on the previous OFDM-

DPD algorithm.

5.2.1 System Model and Algorithm

We consider a single-user massive MIMO system with one receive antenna at the

user and N transmit antennas at the BS. Without loss of generality, we restrict the

presentation below to one OFDM symbol. The data to the user is represented by the

signal vector s ∈ OW , where W indicates the total number of tones in the OFDM

symbol andO represents the set of complex-valued constellation points. Pulse shaping

is applied via the inclusion of guard-band subcarriers that are normally empty. We

denote the set of guard subcarriers as Z and set sw = 0 ∀w ∈ Z.

Precoding is applied separately to each OFDM tone, generating W vectors xw ∈

CN . Each vector is remapped to contain all the tones per antenna, [x1, ...,xW ] =

[a1, ..., aN ]
T , where each an is a W -dimensional vector containing all tones for an-

tenna port n ∈ {1, . . . , N}. At this point, the data is converted from the frequency

domain to the time domain via the inverse discrete Fourier transform (DFT), which

is typically calculated via an IFFT. The data is reorganized to be serial instead of

parallel, and a cyclic pre�x is added. In many systems, windowing is also applied

between symbol boundaries to improve the spectral shaping [100]. We express this

time-domain representation for each antenna as the vector un. This vector is up-

converted to an RF frequency where it is transmitted through a PA with nonlinear

function fn(·). The time-domain data for each antenna is given as ûn = fn(un). The

frequency-domain equivalent is given as x̂n.
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Figure 5.6: Block diagram for the beamformed, single-user vDPD system. User data
is updated before the precoder with the goal of sending ACP cancellation tones in
the guard-band subcarriers.

In OFDM systems, the channel is usually modeled in the frequency-domain for

each tone w as, yw = hwx̂w + nw, where yw denotes the received data for OFDM

tone w and hw is the 1 × N channel vector, and nw is a Gaussian random noise

term. The user received signal can be remapped to [y1, ..., yW ] = [b] to represent a W

dimensional vector of all tones received at the user. The time-domain user-received

signal is given as v.

The system architecture of our proposed OFDM-based massive MIMO DPD ap-

proach is illustrated in Fig. 5.6. Our method's main idea is to utilize the normally

empty subcarriers to reduce the adjacent channel power (ACP) by injecting tones

with the opposite phase of the ACP.

Virtual Power Ampli�er

While in the SISO case from Section 5.1, there was a single PA that could be used

in the ODPD update, in many-antenna systems we have many PAs transmitting

to a user. To adapt the ODPD idea, we seek to create a composite model of the

nonlinearity experienced by the user, which we refer to as a virtual PA (vPA). To do

this, the transfer function of each PA is modeled with a memory polynomial from
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Eq. (2.3). While this is similar to the memory polynomial DPD approach, these are

forward models which are shown to be less susceptible to noise [61] and will only be

used in this learning phase of our algorithm.

Given data for a user, we can perform each of the modulation steps outlined in

Section 5.2.1 including transmission through the PAs to estimate the receive vector y

at the user. With the time-domain version of the user's data, r = IFFT(s), and their

estimated time-domain receive data, v, we learn a nonlinear model, ĝ(·), representing

the e�ective nonlinearity in the direction of the user

vDPD Application

Any algorithm that linearizes an e�ective nonlinerity (vPA), we refer to as a vDPD.

After learning a vPA, ĝ(·), we can estimate the received error in each subcarrier

through this low-complexity proxy for the system's nonlinearities so that we may

perform vDPD on this e�ective nonlinearity. The user data is converted to the time

domain where it goes through ĝ. The estimated time-domain receive signal is then

converted back to the frequency domain to get ŷ for all subcarriers, including the

guard-band subcarriers w ∈ Z. The user data vector is then updated as s(i+1) =

s(i) − µ
(
b̂(i) − sk

)
, where i denotes an iteration index, and µ is a learning rate.

In this work, we assume perfect channel state information (CSI). Practically, it

would not be possible to directly measure CSI on the guard-band subcarriers as

the users do not transmit pilots on these subcarriers. However, it may be possible to

extrapolate these subcarriers by extending known CSI or applying interpolation-based

techniques common for OFDM denoising [101].
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Figure 5.7: Multiplications per OFDM symbol versus the number of antennas.

Neural Network vPA Architecture

To solve for a reasonable solution to ĝ, we train a NN. We use a feed-forward Mul-

tiLayer Perceptron (MLP) NN that is fully-connected with K hidden layers, and N

neurons per hidden layer. The nonlinear activation applied in hidden layers is cho-

sen to be a ReLU, shown in (5.6), which can easily be implemented with a single

multiplexer in hardware.

A model of each PA, f , is calculated. While any nonlinear model could be used,

we utilize a memory polynomial (MP) as in Eq. (2.3). Then the NN engine can

perform a forward pass through the system to calculate the expected error seen at

the receiver. This error is then backpropagated through the system to update the

NN before the precoder. MIMOSA for Python (MIMOSApy) is con�gured to train

on a graphics processing unit (GPU) with the Adam optimizer [102] in PyTorch [87]

for this training.
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5.2.2 Running Complexity

Using commonplace approaches such as the MP DPD will require linearizing each

PA individually. When considering the large number of antennas considered in 5G

and beyond, the complexity can quickly become prohibitive. The main advantage

of our proposed approach is that, while the MP-per-PA approach scales with the

number of antennas, the vDPD uses a small NN. In Fig. 5.7 we plot the complexity

of the MP-per-antenna DPD and the vDPD versus the number of transmit antennas

N . Here, we �x the memory to M = 4, for all systems, and we consider the case

where there are 3240 data subcarriers. The signal is upsampled to 16384 samples

per OFDM symbol for both DPDs to be over 3x upsampling. The MP-per-antenna

DPD, shown in red, increases linearly as each new antenna requires a new MP. The

vDPD, shown in blue, requires only one NN for all cases. We consider a �xed number

of hidden layers, H = 1. For the vDPD scheme, the complexity increases with the

number of antennas due to multiplications associated with the additional precoding

of guard-band subcarriers. While the running complexity may have a higher upfront

cost due to the added FFT/IFFT and precoding of guard-band subcarriers, there can

be a complexity advantage, without sacri�cing performance, in systems where there

are more than eight antennas.

5.2.3 Summary for Single-User vDPD

While massive MISO does not have the same prestige as massive MIMO, it is a

practical scenario that should be considered. System coverage is a major concern in

5G systems [19], and maintaining the full array gain by limiting the number of users

may be necessary in some scenarios. Many 5G arrays operate explicit beamforming

with a �xed codebook where the number of users is restricted [34]. Moreover the large

antenna array may be used as a point-to-point system for a �xed backhaul where there
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is e�ectively one beam. In scenarios with 32 antennas, we can achieve approximately

3x reduction in complexity, and for 64 antennas we achieve a 5x reduction.

5.3 vDPD for Multiple Users/Many Antenna

We now present the full vDPD scheme for MU massive MIMO. Conceptually, this is

similar to the scheme for MISO systems presented in the previous section. However,

there is one complication in that spatial intermodulation products can occur, as shown

in Eq. (4.10). In the system simulations shown in Fig. 4.13, OOB energy can be seen

throughout the angular domain in directions distinct from the primary beams. While

these spurious beams are frequently neglected in the literature, they too must be

corrected to meet the spectral emission mask.

The main idea remains similar to the previous section. However, we now augment

the design with a new concept that we call virtual user equipment (UE)s (vUEs). The

main idea of vUEs is to add an virtual user input to the precoder, and corresponding

columns in the precoder matrix, for each spurious beam. The vUE precoder columns

are �xed with the expected angle of departure (AoD) of the beams, as calculated by

Eq. (4.13). Then the NN before the precoder will use the input user data to minimize

the error at the receiving users in the far-�eld of the array and minimize the OOB

emissions in the directions of the users and vUEs.

5.3.1 System Model

We consider a fully digital, MU massive MIMO system with U single antenna users

and N PAs and antenna radio frequency (RF) units at the BS. Without loss of

generality, we restrict the presentation below to one OFDM symbol. A symbol of

data to the users is represented by the vector sw ∈ OU , where w indexes the OFDM
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tones from 1 to W and O represents the set of complex-valued constellation points.

Pulse shaping is applied via the inclusion of guard-band subcarriers that are normally

empty.

Linear precoding is applied separately to each OFDM tone, generating W vectors

xw ∈ CN with xw = Gwsw. Here, Gw ∈ CN×U is the precoding matrix such as

zero-forcing (ZF) or maximum ratio transmission (MRT). Each vector is remapped

to contain all the tones per antenna, [x1, . . . ,xW ] = [a1, . . . , aN ]
T , where each an is

a W -dimensional vector containing all tones for antenna port n ∈ {1, . . . , N}. At

this point, the data is converted from the frequency domain to the time domain via

the inverse discrete Fourier transform (IDFT), which is typically calculated via an

IFFT. The data is reorganized to be serial instead of parallel, and a CP is added. In

many systems, windowing is also applied between symbol boundaries to improve the

spectral shaping [25]. We express this time-domain representation for each antenna as

the vector un. This vector is upconverted to an RF frequency where it is transmitted

through a PA with nonlinear function fn(·). The time-domain data for each antenna

is given as ûn = fn(un), equivalently expressed as a discrete-time signal, û[i] = [un]i.

The frequency-domain equivalent is given as x̂n.

In OFDM systems, the channel is usually modeled in the frequency-domain for

each tone w as, yw = hwx̂w + nw, where yw denotes the received data for OFDM

tone w and hw is the 1 × N channel vector, and nw is a Gaussian random noise

term. The user received signal can be remapped to [y1, . . . , yW ] = b to represent a W

dimensional vector of all tones received at the user. The time-domain user-received

signal is given as v.
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5.3.2 Virtual DPD NN Algorithm

The system architecture of our proposed vDPD scheme for MU-massive MIMO is

illustrated in Fig. 5.8. Our method's main idea is to train a NN to predistort so that

the far�eld responce in the user and spurious directions is corrected.

vDPD NN Training

A block diagram of the system is presented in Fig. 5.8. The system calculates PA

models for each PA using dedicated feedback paths and typical nonlinear model such

as the GMP or a NN. We assume full channel information is known. We then predict

the angles of the spurious beams and initialize the new columns in the precoding

matrix to precode information in those directions.

For training, the user data goes through a NN predistorter, which is shown in

Fig. 5.9. While the NN has an input for each user, it has outputs for each user and

vUE. This data goes through the vUE enhanced precoding matrix, IFFTs, PA models,

and channel matrix. The error is computed in the direction of the UEs and spurious

beams. This error is then backpropagated through the system to update the NN.

The complete system can be modeled as

ỹ = H(f̂(P ĝ(s))). (5.9)

We seek to minimize the far�eld error, so we create a digital model of the system. We

calculate a training loss to backpropagate through the system so that we may tune

the NN,

e = ∥y − ỹ∥2. (5.10)

While the training complexity is high, it is run relatively infrequently. The PA
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Figure 5.8: MIMO vDPD with vUEs System Block Diagram.

models that are used to create the training data do not need to be relearned often

since they are based on the PAs, whose models remain relatively consistent for a given

temperature. Once the NN is learned, it can be updated in a few epochs as needed

to improve performance whenever needed.

5.3.3 Complexity

Using commonplace approaches such as the MP DPD will require linearizing each PA

individually. When considering the large number of antennas considered in 5G and

beyond, the complexity can quickly become prohibitive. The main advantage of our

proposed approach is that, while the DPD-per-PA approach scales with the number

of antennas, the vDPD uses a small NN. In Fig. 5.10 we plot the complexity of the

GMP-per-antenna DPD and the vDPD versus the number of transmit antennas N .

Here, we �x the memory to M = 4, for all systems, and we consider the case where

there are 1200 data subcarriers. The signal is upsampled to 4096 samples per OFDM

symbol for both DPDs to be over 3x upsampling. The MP-per-antenna DPD, shown

in red, increases linearly as each new antenna requires a new MP. The vDPD, shown
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Figure 5.9: vDPD NN Block Diagram. Each user stream along with M delayed
replicas are input into a NN which computes predistorted outputs for each user and
vUE.

in blue, requires only one NN for all cases. Here, there is a complexity advantage

to the vDPD scheme in cases where U ≤ 4 where the ratio between antennas and

users is 8:1. For example, in the case of two users and 64 antennas, the GMP scheme

requires 3.8× the total number of multiplies compared to the vDPD scheme.

With the vDPD scheme with the added vUE angles, there can be a complexity

advantage for some scenarios. However, as the number of users grows, the number

of vUEs grows combinatorially. In Fig. 5.11, we show the growth in the number

of spatial intermodulation products with the number of users. This fast growth in

the number of unique intermodulation products represents a key challenge with a

beam-based DPD scheme, such as ours.

5.3.4 Two-User Simulation

In this section, we show the vDPD with vUEs for two users. We consider a user at

80° and 110°. In Fig. 5.12, we show the array response in the case without vDPD.

Here, the maximum ACLR is in the direction of the users at nearly -30 dBc. We
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Figure 5.12: LOS example without DPD with a user at 80° and 110°.

apply the vDPD scheme with 80 neurons and one hidden layer. The �nal spectrum

is presented in Fig. 5.13. For each vDPD result, we present the beam plot on testing

symbols that were not in the set of training symbols. We show the training process

in Fig. 5.14. Every 100 epochs, we create new training data to avoid over�tting.

5.3.5 Six-User Simulation

In these tests, we show the case of six users. We apply the vDPD scheme with 200

neurons and one hidden layer. In Fig. 5.15, we show the case where six users are

placed at 64°, 75°, 83°, 95°, 110°, and 120°. Here, the ACLR is strongest in the

direction of the users, but a peak of only -39 dBc. When compared to the case of

two users, the ACLR is more evenly dispersed in the angular domain leading to lower

peaks.

In Fig. 5.16, we show the case after vDPD. The ACLR is reduced in all directions

with one minor violation. In this case, with the full combination of intermodulations

considered, we have a total of 96 possible vUEs.



CHAPTER 5. VIRTUAL DPD SOLUTIONS 88

0

15

30

45

60
7590105

120

135

150

165

180
−60 −40 −20 0

Relative Power (dB)

Main Channel
L1 Channel
U1 Channel

Figure 5.13: LOS example with vDPD a user at 80° and 110°.
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Figure 5.15: LOS beamforming to six users without DPD. In this example, there are
signi�cant OOB emissions violations throughout the angular domain.
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Figure 5.16: LOS beamforming to 6 users with vDPD.
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5.3.6 User Mobility

In a practical deployment, users typically move throughout the environment. Due to

the fact that the vDPD solution occurs before the beamforming precoder, it is natural

to expect that its performance depends on the precoder. However, this is not true in

many scenarios. In this section, we explore the vDPD performance while considering

user mobility over a variety of scenarios by using MIMOSApy.

LoS Channels

For a line-of-sight (LoS) system, we have vDPD as follows. Assume that a user moves

from position θt1 to θt2 with channel vectors h1 and h2. To mathematically illustrate

the idea, consider the two-tone signal in a MIMO array with identical third-order

memoryless intermodulation on each antenna, similar to Section 4.2.1,

yn(k) =

(
A1 +

3αn

2
A1A

2
2 +

3αn

4
A3

1

)
ej(γ1+ϕ1,n(t)) (5.11)

+

(
A2 +

3αn

2
A2

1A2 +
3αn

4
A3

2

)
ej(γ2+ϕ2,n(t)) (5.12)

+
3αn

4
A1A

2
2e

j(2γ2−γ1+2ϕ1,n(t)−ϕ2,n(t)) (5.13)

+
3αn

4
A2

1A2e
j(2γ1−γ2+2ϕ2,n(t)−ϕ1,n(t)). (5.14)

Here, there are four beams created at array response directions ϕ1,n(t), ϕ2,n(t), 2ϕ1,n(t)−

ϕ2,n(t), and2ϕ2,n(t)−ϕ1,n(t). While these array response directions update with t, the

generic I/Qwaveform in each array response remains the same. For example, the sig-

nal beamformed in the direction 2ϕ1,n(t)−ϕ2,n(t) is given as N
3α
4
A1[k]A

2
2[k]e

2γ2[k]−γ1[k]

which does not depend on the user positions. Hence, as long as the correct nonlin-

earity can be calculated and as long as the spurious direction can be predicted, the

only update necessary with user mobility is to the linear precoder.
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Simulations

In this section, we simulate a two user case with OFDM where we train with the users

at 70° and 100°. We then step user 1 along an arc to positions of 80° and then 90°.

We assume that full CSI is known by the transmitter and the precoder is updated.

However, the vDPD remains �xed. We consider a uniform linear array (ULA) with

64 elements, each with third-order nonlienarities. We choose a vDPD architecture

as a MLP with one hidden layer and 80 hidden neurons. We train in the �rst user

position over 150 epochs using the Adam optimizer. We test using OFDM with 1200

data subcarriers and 4096 total subcarriers with a spacing of 15 kHz. We precode

using MRT.

In Fig. 5.17, we see the result of the MIMOSApy simulation. We initially train

the vDPD for user positions of 70° and 100°, shown in Fig. 5.17a and Fig. 5.17b.

User 1 then moves to 80° and 100°, shown in Fig. 5.17c and Fig. 5.17d. While the

precoder is updated to steer the beams in new directions, the relative contents of each

beam remains constant. The signal beamformed to the spurious beams remains an

intermodulation of the signals beamformed to the users and hence can be predistored

by the same vDPD function.

5.4 Other Schemes Explored

While developing vDPD, many other schemes were explored. While each idea had

merit, we ultimately abandoned each in favor of the MU-vDPD shown in the previous

section. In this section, we provide a brief overview of a few notable schemes and their

limitations. While we do not provide and document results, we hope that section may

provide interesting notes for anyone pursuing similar ideas.



CHAPTER 5. VIRTUAL DPD SOLUTIONS 92

0

45

90

135

180
−60−40−20 0

Relative Power (dB)

(a) No vDPD. UE 1 at 70°

0

45

90

135

180
−60−40−20 0

Relative Power (dB)

(b) vDPD trained while UE 1 at 70°

0

45

90

135

180
−60−40−20 0

Relative Power (dB)

(c) Reuse vDPD while UE 1 moves to 80°

0

45

90

135

180
−60−40−20 0

Relative Power (dB)

Main Channel
L1 Channel
U1 Channel

(d) Reuse vDPD while UE 1 moves to 90°

Figure 5.17: LOS Mobility Example. The users start at 70° and 100°. We then train
the vDPD for the main and spurious beams. User 1 moves from 70° to 80°, and we
reuse the previously trained vDPD while updating the precoder. The user then moves
from 80° to 90°without sacri�cing the vDPD performance.
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Linear Precoder DPD Most MIMO systems use a linear precoder to generate

the symbols to transmit at each antenna. Typically, ZF or MRT is adopted to op-

timize signal-to-interference-plus-noise ratio (SINR) or signal-to-noise ratio (SNR).

However, this is done without considering the imperfections including the PA non-

linearity. While reformulating the linear precoder solution to include nonlinearity

is mathematically intractable, machine learning tools can be used to tune weights.

We pursued this strategy and used MIMOSApy to learn the precoder weights after

initializing them to the ZF solution. However, it became quickly apparent that there

is no mechanism for a linear precoder to apply predistortion so that the OOB emis-

sions could be reduced. While some in-band error vector magnitude (EVM) could

be improved, the linear precoder could have thousands of parameters and hence was

vulnerable to over-�tting and long training times with no notable advantage. We

also performed initial tests where we learned the precoder along with the vDPD NN.

However, this too provided no advantage when compared to vDPD with the standard

precoder solutions.

Neural Nonlinear Precoder Nonlinear precoding schemes such as dirty paper

coding (DPC) are able to maintain the capacity as if the channel were free of inter-

ference [103]. One idea we considered was to develop a joint vDPD precoding scheme

that would correct for nonlinearities and precode for the antennas via one NN. Similar

to above, this drastically increased the size of our NN making it di�cult to train and

converge. By separating the predistortion functionality and the precoding functional-

ity, we are able to keep the NN relatively small for fast training. Long training times

from NN-based precoders ultimately may make it challenging to compute updates

within the channel coherence time.
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Multi-User vPA In this thesis, we have considered a beam-based pridistortion

method where we correct the nonlinearities in each beam, without explicitly model-

ing the e�ective nonlinearities of vPAs. We originally began the project by explicitly

modeling the nonlinearity to each user as if there was one e�ective nonlinearity in that

direction. Based on this vPA, we could then use an ILA or other traditional DPD

training technique to train some sort of predistorter before the precoder corresponding

to that beam. However, in multi-user scenarios, we found that beam intermodulation

could occur, creating additional spurious beams. Considering spurious beams in this

vPA-focused scheme became di�cult as we could not directly create a vPA corre-

sponding to this spurious beam where there was no intended signal. We then pivoted

our focus to concentrate on the predistortion side, where we would consider the total

error in multiple directions leading us to the vDPD scheme focused on in this thesis.

vDPD-based on precoder pseudoinverse In [22], we considered a vDPD scheme

where we learned the MP-based predistorter for each antenna to generate ideal, pre-

distorted data. We then multiplied this predistorted data by the pseudoinverse of the

precoder matrix, where we trained a NN similar to the NN in this thesis. While this

scheme worked well for the primary, user directions, there was limited performance

in the spurious directions.



Chapter 6

Conclusions

To enable the next generation of cheaper, more e�cient massive multiple-input,

multiple-output (MIMO) technologies it is critical to reduce the complexity through-

out the processing chain. In this work, we show a novel method of predistorting to

correct for the nonlinear ampli�ers. In particular, we show that it is possible to per-

form this linearization before the precoding beamformer, even when there are multiple

users. By utilizing a neural network, we are able to reduce the complexity by up to

a factor of 4x in cases with a high number of antennas and low number of users.

We have presented in-depth simulations exploring the problem with a variety of

complex impairments in the power ampli�er (PA) models including memory e�ects

and high order nonlinearity. We have used an actual Doherty PA array to establish

the baseline model and show the expected behavior. We have also studied the e�ect on

the out-of-band (OOB) energy when beamforming. We found that the OOB energy is

dominant in the direction of the intended beamforming. In multi-user cases, secondary

beams appear separate from the main beam due to intermodulation of the user data.

We have developed a scheme to correct for these nonlinearites before the precoder

using a neural network.
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6.1 Possibilities for Future Exploration

6.1.1 Experimental Veri�cation

There were multiple avenues of experimental veri�cation that were pursued. In par-

ticular, we worked to perform veri�cation with Recon�gurable Eco-system for Next-

generation End-to-end Wireless (RENEW). However, there are many challenges when

it comes to working with hardware platforms. We built MIMOSA for Python (MI-

MOSApy) in Section 3.2, a machine-learning-enabled interface to RENEW for rapid

training and testing with RENEW and used it to measure the beamforming response

in Section 4.1.7. However, we were unable to complete the virtual digital predistor-

tion (DPD) (vDPD) veri�cation due to unforeseen issues with the frontend hardware.

While RENEW has the potential to provide insights due to the large number of an-

tennas, it is still signi�cantly limited in the usable bandwidth, forcing us to utilize

signals with channel bandwidths as low as 1.4 MHz whereas the industry is currently

increasing bandwidth as high as 100 MHz in similar spectrum bands. The wideband

PA testbed from Section 4.1.1 provides an alternative platform to perform testing

with 5G new radio (NR) signals of 100 MHz. However, with only 16 antennas, the

possible number of users to test remains low.

6.1.2 Additional Optimizations

Currently there are multiple avenues of potential improvements to be made. In par-

ticular, the primary challenge is addressing the case of many users in massive MIMO.

We are interested in exploring the case of allowing the neural network (NN) to aug-

ment the precoder to help add degrees of freedom to reduce the adjacent channel

leakage ratio (ACLR).
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6.1.3 Additional Investigations

The vDPD scheme is an entirely new method of performing predistortion in wireless

communications. By moving the predistortion up the signal processing chain, there

are many possible interaction that can occur. In particular, the relationship between

the vDPD and the precoder has not been fully explored. Considerations for how often

the vDPD scheme needs to be updated with respect to changes in the channel and

precoder are left for future work. Considerations for real-time training are also left

for future work.

6.2 Impact

This scheme can have impacts throughout the industry. For example, many practical

massive MIMO systems currently use explicit beamforming with �xed codebooks of

beams. Moreover, the number of downlink streams is often only one to two users,

where we showed our system to have the most complexity reduction. Any large-

scale MIMO communications system with �xed beams such as 5G-to-the-home or

other backhaul systems or line-of-sight (LoS) MIMO [47] may bene�t from the vDPD

schemes outlined in this thesis. In these cases, the NN vDPD solution could be

deployed for signi�cant computational savings and only minor retraining over time.
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